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A B S T R A C T

Quantifying ecosystem resilience under drought is crucial for sustainable development strategies. This study aims
to investigate the spatial and temporal variability of Net Primary Productivity (NPP) across anthropogenic bi-
omes in India (2000 to 2020) and to understand the post-drought long-term ecosystem resilience. A time series
study of monthly precipitation, standardized precipitation index (SPI), and NPP were applied to understand
ecosystem resilience across twenty anthropogenic biomes. Mann-Kendall test was used to quantify the magnitude
and direction of the trend. In addition, bivariate raster maps of mean precipitation and soil moisture were
presented in relation to ecosystem resilience in India. The forested areas in the Himalayan region and the
Western Ghats of India were identified with resilient ecosystem that can withstand climate change. However, the
croplands and rangelands were non-resilient to drought, making them vulnerable to climate change. Northern
and western part of India falls under catastrophic to critical non-resilient ecosystem. Soil moisture availability in
the biome, forest cover, type of land use, agricultural practices, and climate shocks are mainly influencing the
resilience of the anthropogenic biomes in India. The resilience assessment can be used by policymakers to plan
anthropogenic interventions in harmony with nature.

1. Introduction

Drought is one of the most complex hydrological and climate di-
sasters, causing damage to ecosystem structure and function
(Vicente-Serrano et al., 2020; Orimoloye et al., 2022). During the last
three decades, the per cent area affected by the serious climatic hazard
of drought has doubled, severely affecting natural ecosystems, global
food production, and human livelihoods (Hu et al., 2019). When an
ecosystem experiences a drought, it can lead to a variety of ecological
changes that may affect the elasticity or resilience of the natural system
(Chambers et al., 2019; Sandi et al., 2020). In other words, ecological
resilience is the ability of an ecosystem tomaintain its normal patterns of
nutrient cycling and biomass production after being subjected to dam-
age caused by drought. Recovery time, as an important measure of
resilience. It has been widely used to assess ecosystem resilience to
drought. However, distinguishing the difference in recovery time under
various drought intensities is difficult (Falk et al., 2019; Ndayiragije and
Li, 2022). In recent times, the impact of recurring droughts on crop
yields has been further exacerbated by climate change and anthropo-
genic activities (Ali et al., 2017; Ray et al., 2018; Vogel et al., 2019). The

period, frequency, and degree of droughts varied from region to region.
It can disrupt the economic and ecological systems that disturbes the
livelihoods of the people (Reddy and Singh, 2016).

In India, agricultural drought risk is higher because of a prolonged
dry spell during the monsoon season, which has an impact on ground-
water and food security to feed 1.3 billion people (Arun Kumar et al.,
2021). Nearly 60% of India’s population relies on the agricultural sector
for their livelihood and contributes about 17% of the nation’s gross
domestic product (Maruti, 2013). Crop stress due to droughts has a
direct impact on crop production and the nation’s overall economy
(Malhi et al., 2021). Jha et al. (2019) conducted a study to understand
the relationship between extreme climate conditions and terrestrial
ecosystem productivity using a copula-based probabilistic model over
India and found that 8 out of 25 river basins were resilient to extreme
climatic conditions. This is concerning, as it suggests that many areas
may be unable to adapt to the changing climate.

Effective assessment of droughts requires frequent and internally
consistent records of information on a variety of biophysical variables
(Kogan, 2001). Remote sensing can play a crucial role in the assessment
of ecosystem resilience by providing a wealth of information on the
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biophysical and environmental conditions of the ecosystem at various
scales (Senf, 2022). Globally, vegetation indices derived from temporal
remote sensing data are widely applied to monitor ecosystem stress and
health (Frappart et al., 2020). Normalized difference vegetation index
(NDVI) data is a widely used technique that can provide valuable in-
sights into the health and productivity of vegetation in an ecosystem
(Huang et al., 2021). The Moderate Resolution Imaging Spectroradi-
ometer (MODIS) data products have been widely used in time series
analysis and change detection studies, especially to measure crop con-
ditions (Zheng et al., 2016). Shahzaman et al. (2021) explored the
performance of the evaporative stress index (ESI), vegetation health
index (VHI), enhanced vegetation index (EVI), and standardized
anomaly index (SAI) based on satellite remote sensing data for agri-
cultural drought assessment in South Asia and found that ESI is a good
agricultural drought indicator, being quick and having greater sensi-
tivity. Martínez et al. (2022) analysed a spatiotemporal study of
ecosystem functioning in Spain with a time series study of daily GPP,
NPP, mean air temperature, and monthly SPI. Based on long-term
observed data, SPI, and the Biome-BGC process model, Lei et al.
(2015) proposed a new method of estimating NPP loss under various
drought conditions in different grassland ecosystems. Fu et al. (2021)
focused on the effects of the resilience of an extremely drought-prone
desert riparian forest ecosystem in the Tarim River basin of China.
They found that ecological resilience has increased significantly from
2013 to 2015, following the implementation of ecological water transfer
projects, river regulation, and natural vegetation enclosure projects. Liu
et al. (2021) analysed the global response of vegetation activity to
drought at different time scales using the Standardized Precipitation
Evapotranspiration Index (SPEI) and NPP and concluded that the water
balance was the most predominant factor affecting the response of
vegetation to drought. Another study examined the relationship be-
tween spatiotemporal gradients and the response of vegetation pro-
ductivity under both dry and wet conditions (Khatri-Chhetri et al.,
2021). According to a study by (Xu et al., 2018), drought trends in most
parts of northern China are associated with changes in the response of
different land cover classes, as indicated by the link between NDVI and
SPEI. In a study conducted by (Gouveia et al., 2017), the impact of
drought on vegetation across the entire Mediterranean basin was
investigated. The findings of the study demonstrated that a considerable
portion of the region encountered severe drought during the research
period, exhibiting notable variations in both spatial distribution and
seasonality.

Although these studies have significantly contributed to the under-
standing of the mechanisms by which drought impacts vegetation, it is
yet unknown what elements may be capable of influencing how the
plant reacts to drought in various climatic regions around the globe. The
main objective of this study is to use SPI3 to estimate the quantitative
effects of ecosystem resilience under different anthropogenic biomes in
India. To achieve this objective, the study has three specific goals: (1) to
identify the temporal variation of drought across different anthropo-
genic biomes in India between 2000 and 2020; (2) to quantify the NPP
across different anthropogenic biomes in India and identify vulnerable
regions at risk of ecosystem resilience; and (3) to evaluate the correla-
tion of different climatic determinants for ecosystem resilience.

2. Data and methods

2.1. Study area

India, with a population of over 1.4 billion people as of 2021, is
projected to hold 1.6 billion by 2050 (United Nations, 2017). Southern
part of India is surrounded by water: the Indian Ocean in the south, the
Bay of Bengal in the southeast, and the Arabian Sea in the southwest.
While all along the northern boundary- we have Himalayas. India is a
diverse country with a varied geography and a total area of 3.29 million
square kilometres, which includes the Himalayan Mountain range in the

north, the Indo-Gangetic Plain, the Thar Desert in the northwest, and the
Deccan Plateau in the south. The climate in India varies from tropical in
the south to more temperate in the north. The country experiences three
distinct seasons: summer, monsoon, and winter. The summermonths are
from March to May, with temperatures ranging from 32 ◦C to 45 ◦C. The
monsoon season, which brings most of the country’s rainfall, is from
June to September. The winter season is from December to February,
with temperatures ranging from 10 ◦C to 15 ◦C in the north and 20 ◦C to
25 ◦C in the south (Krishnan et al., 2020). Agriculture is an important
sector of the Indian economy, contributing to around 17% of the
country’s GDP and employing more than 50% of the population (Gulati
and Juneja, 2022). India is one of the largest agricultural producers in
the world, producing a wide range of crops such as rice, wheat, sugar-
cane, cotton, tea, coffee, and spices (Pathak et al., 2022). The majority of
the agricultural land in India is rainfed and prone to weather-related
risks, such as droughts and floods. As climate change continues to
alter global weather patterns, it is becoming increasingly important to
prioritize resilience by promoting biodiversity and reducing human
impact on natural resources.

2.2. Datasets and methods

2.2.1. Anthropogenic biome
The Anthropogenic Biome offers a novel perspective by addressing

the human effect on Indian ecosystems when taking into consideration
the terrestrial biosphere. The term “anthropogenic biome" or “human
biome" refers to a biome that has been modified by humans in terms of
its functional depth and geographic range, and the input variables
include population (urban and non-urban), land use (per cent area of
pasture, crops, irrigation, rice, and urban land), and land cover (per cent
area of trees and bare earth). A novel approach to mapping the global
patterns of human interaction and the transformation of the terrestrial
biosphere was introduced by (Ellis and Ramankutty, 2008). The datasets
were acquired from Dataverse at Harvard University (https://dataverse.
harvard.edu/). Tere are six major and twenty sub-categories of anthro-
pogenic biomes in India, i.e., dense settlements, villages, croplands,
rangelands, seminatural lands, and wildlands (Ellis et al., 2020).

2.2.2. Net Primary Productivity
Gross Primary Productivity (GPP) is the amount of organic substance

synthesized by the producers/plants in a given period and area. NPP is
the amount of organic matter produced during photosynthesis minus
autotrophic respiration. In other terms, NPP reflects the health status of
vegetation affected by climate, soil, CO2, and other minerals. It is one of
the most useful measurements for the regional and global carbon cycle
of the terrestrial ecosystem (Sun et al., 2021). To access the ecosystem
health of India, remote sensing estimation of NPP has been used. It is a
key indicator for measuring vegetation growth status and ecosystem
health through the carbon cycle. NPP is a commonly used index that
reflects ecosystem response to climate change and has shown a signifi-
cant correlation with precipitation, temperature, soil moisture, and
several other climatic factors (Li et al., 2015; Lei et al., 2015). The
present study has used remotely sensed data from MODIS
(MOD17A2H.061) acquired from Land Processes Distributed Active
Archive Center (https://lpdaac.usgs.gov/). In the present study, we used
the NPP as a proportion of 0.5 * GPP (Collalti and Prentice, 2019).

2.2.3. Precipitation and soil moisture datasets
The rainfall data has been acquired from the IMD gridded dataset.

This data is prepared from daily rainfall data and archived at the Na-
tional Data Centre, IMD, Pune (https://www.imdpune.gov.in/), using
the Shepard method. The data is arranged in a 135 x 129 grid with a
spatial resolution of 25 km and a one-day temporal resolution (1950 to
2020). In addition, we have also used soil moisture data extracted from
the Climate Prediction Center, prepared by the Earth System Research
Laboratory of the National Oceanic and Atmospheric Administration
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(ESRL NOAA). The Climate Prediction Center Soil Moisture data is
prepared from a bucket water balance model using global precipitation
at 17,000 gauge stations worldwide available at 0.5◦ global grids (htt
ps://psl.noaa.gov/).

2.2.4. Computation of standardized precipitation index (SPI3) at a three-
month time scale

In the study, gridded monthly mean precipitation data has been used
to compute a three-month SPI (SPI3). (McKee et al. 1993, 1995) pro-
posed the SPI3 as a drought monitoring index to define drought in-
tensities. The SPI3 is used in the study as it is useful for monitoring and
managing agricultural impacts, short-term water resource management,
and responding to immediate changes in precipitation patterns
(Mohammed et al., 2022). SPI3 was defined as the number of standard
deviations that the observed cumulative rainfall at a given time scale
would deviate from the long-termmean for that same time scale over the
entire length of the record (McKee et al., 1993). The positive SPI values
indicate greater than mean precipitation, and the negative values indi-
cate less than mean precipitation.

SPI3=
Xi − Ximean

σ

where, Xi = rainfall, Ximean = long term average rainfall, σ = standard
deviation. Based on the intensities of the values the drought classes have
been classified as seven classes accordingly, extremely dry (− 2 and less),
severely dry (− 1.5 to − 1.99), moderately dry (− 1.0 to − 1.49), near
normal (− 0.99 to 0.99), moderately wet (1.0 to 1.49), very wet (1.5 to
1.99) and extremely wet (2.0 and more) conditions.

2.2.5. Computation of ecosystem resilience
Biodiversity stabilizes over time following any extreme climate

event, which is becoming more common due to anthropogenic inter-
vention worldwide. To quantify the Indian subcontinent’s ecosystem
resilience to climate shocks (drought), we have used NPP as an
ecosystem response indicator. A drought event was marked when the
SPI3 was negative and reached an intensity of − 1.0 or less during the
study period. Initially, the driest year was identified for every anthro-
pogenic biome (NPPd). Then the mean NPPm was also calculated for the

study period to calculate ecosystem resilience (Ri) expressed as a ratio of
(NPPd) in the driest year to its temporal mean (NPPm) value calculated
from 2000 to 2020. If Ri is ≥ 1, the ecosystem was resilient to climatic
shock (drought), and <1 was non-resilient.

Ri=
NPPd

NPPm

Where, Ri is classified into five categories 0.7 ≤ catastrophic non-
resilient ecosystem; 0.8 ≤ Ri < 0.9 critical non-resilient ecosyatem;
0.8 ≤ Ri < 0.9 moderate resilient ecosystem; 0.9 ≤ Ri < 1 marginal non-
resilient ecosystem and Ri ≥ 1 resilient ecosystem.

3. Result

3.1. Spatial distribution and land cover area of the anthropogenic biome

India is a home of 1.4 billion plus people residing in cities, towns,
suburbs, villages (Fig. 1a). Rainfed villages occupy the largest portion of
the land area, covering over 38%. Following closely are irrigated vil-
lages, which account for approximately 19% of the land area. Addi-
tionally, there are rice villages, covering about 8% of the total area.

Despite their limited coverage, croplands including residential irri-
gated croplands, residential rainfed croplands, populated rainfed crop-
lands, and remote croplands play a crucial role in India’s agricultural
landscape (Fig. 1b). These areas primarily support subsistence farming
and provide livelihoods for millions of rural families. However, their
productivity is often constrained due to reliance on rainfall and a lack of
irrigation infrastructure. Followed by villages, croplands are the most
dominant biomes in India, covering over 11% of the total land area.
Interestingly, even the rangelands which include forests and woodlands
are home to a substantial human population. These highly productive
areas support diverse crops such as rice, wheat, and pulses. However,
rangelands are the least populated regions, with livestock, forests, and
minimal crop fields covering only 2% of India’s total land area. The
seminatural biome, accounting for 18% of India’s land area, includes
forests and woodlands with smaller per cent of human populations. In
contrast barren lands, have very limited human occupancy and cover
just 10% of India’s land (Fig. 1b). Lastly, the wildlands, which are

Fig. 1. (a) Anthropogenic biomes of India, organized into groups and sorted in order of population density; (b) Percentage of land area under twenty anthropo-
genic biomes.
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uninhabited and characterized by harsh environmental conditions such
as extreme temperatures, low precipitation, and high winds support
specialized plant and animal species.

3.2. Trend of NPP

The findings for statistical significance and magnitude measures of
NPP are presented in Table 1. NPP quantifies the carbon stored in plant
biomass through photosynthesis and is evaluated across various
anthropogenic biomes, which refer to human-influenced landscapes. Z-
values indicate the deviation of each biome from the mean. Higher Z-
values indicate a greater deviation. In Table 1, we observe that the Z-
values range from 0.436 to 2.681. Croplands like residential irrigated
croplands, rice villages, irrigated villages and rainfed villages have
higher Z-values, indicating a substantial deviation from the mean
compared to remote croplands with a lower Z-value. The p-value in-
dicates the statistical significance of the relationship between variables,
p-value <0.001 suggests a highly significant relationship. Most biomes
have p-values below 0.001, except the rangelands, populated, remote
and wild woodlands. Sen’s slope (Q) measures the trend or change in a
variable over time. Higher Sen’s slope values indicate a stronger trend.
For example, villages like irrigated and rainfed have higher Sen’s slope
values (0.281 and 0.278, respectively), indicating a relatively strong
trend compared to pastoral villages with a lower Sen’s slope value of
0.008. It is observed that the largest percentage share of irrigated village
biome and rainfed village biome is 38% and 19% respectively (Fig. 1b)
with significant NPP values due to their sheer size. Tau (τ) is Kendall’s
tau correlation coefficient, representing the strength and direction of the
association between two variables. Higher Tau values indicate a stron-
ger correlation. τ - value ranges from -1 to +1, with values closer to -1
indicating a negative trend, values closer to +1 indicating a positive
trend, and values closer to 0 indicating no trend. Rice villages (0.108),
irrigated villages (0.112), rainfed villages (0.112) and residential irri-
gated cropland (0.113) have higher Tau values, indicating a fair corre-
lation. In contrast, inhabited treeless and barren lands have a lower
τ-value of 0.066, suggesting a weak correlation. Additionally, all Sen’s
slopes and τ-values are positive with little to no trend, indicating an

overall positive trend in the variables across time. The study shows that
rice villages, irrigated villages, rainfed villages and residential irrigated
croplands are becoming increasingly productive over time, while other
biomes show mixed results.

3.3. Net primary productivity across different anthropogenic biomes

The present study highlights the importance of extreme climatic
conditions in influencing the variation in NPP, which poses a substantial
risk to ecosystem stability. Precipitation variations can alter soil mois-
ture and could aggravate biomass reduction. Fig. 2 illustrates the
average NPP in 20 distinct anthropogenic biomes. During the period
from 2000 to 2020, ice, uninhabited biome recorded the lowest NPP (0
g*C/m2) due to negligible vegetation cover, followed by remote ran-
gelands (47 g*C/m2) and wild treeless and barren lands (39 g*C/m2).
While water-abundant biomes such as irrigated and rainfed land had
higher NPP values, arid and semi-arid regions with limited water
availability had lower NPP values, indicating the importance of water
availability in determining an ecosystem’s productivity (Fig. 2). Simi-
larly, the mean NPP of the biomes in the woodlands/forests and irrigated
cropland have higher mean NPP values than barren and rangeland over
time.

3.4. Ecosystem resilience across anthropogenic biomes

Table 2 represents the variation in ecosystem resilience calculated as
the ratio of the driest NPP, identified during the driest SPI3 condition, by
the mean NPP over the study period. The ecological indicators, such as
NPP and SPI3, provide insights into the productivity, climate, and water
availability in each anthropogenic biome, human-made landscapes that
have been significantly altered by human activities, such as agriculture,
urbanization, and land-use changes. It is observed that across the dense
settlement, urban biomes have lower resilience (Ri) (0.704) compared to
the mixed settlements biome. In terms of village biomes, rice villages
exhibit the highest Ri value (0.721) followed by irrigated, rainfed and
pastoral villages, suggesting an adequate level of soil moisture. Among
the croplands, remote croplands have the lowest Ri (0.493). The ran-
geland biome has a lower Ri compared to all other biomes. The most
overwhelming resilience ecosystem is the woodlands/forests with a Ri
value close to 1. On the other hand, the barren biome has a Ri value of
less than 1, indicating less productivity than most of the biomes.

3.5. Ecosystem resilience across anthropogenic biomes

The spatial variation in the distribution of the ecosystem shows that
(Fig. 3) a large part of the northern and western part of India falls under
catastrophic to critical non-resilient ecosystem. This could be due to
ecosystem vulnerability in terms of lower NPP. Central and western
India shows a mixed pattern of non-resilient ecosystems. The western
parts of northern India are also having non-resilient ecosystems, which
signifies the seriousness of anthropogenic-induced and climate-driven
vulnerability. The northeastern part of India has moderate non-
resilient to resilient ecosystems due to its forest cover. Although the
valley region of Brahmaputra is non-resilient. The highlight of the study
is the western part of southern India is more slightly resilient due to good
canopy cover and soil moisture.

3.6. Association of ecosystem resilience with precipitation and soil
moisture

The links between ecosystem resilience and other environmental
variables like precipitation, and soil moisture are complex (Fig. 4a and
b). The study has identified a correlation between different variables at a
95% significance level with the spatial Spearman’s correlation between
precipitation and soil moisture. North-eastern, southwestern coastal and
a few pockets of eastern India have higher ecosystem resilience with

Table 1
Summary of Mann-Kendall trend test for net primary productivity (2000–2020).

Anthropogenic biomes Z p-value Sen’s slope
(Q)

Tau (τ)

Dense settlements
Urban 1.703 <0.001 0.137 0.072
Mixed settlements 2.211 <0.001 0.238 0.094
Villages
Rice villages 2.553 <0.001 0.232 0.108
Irrigated villages 2.650 <0.001 0.281 0.112
Rainfed villages 2.640 <0.001 0.278 0.112
Pastoral villages 1.778 0.002 0.008 0.075
Croplands
Residential irrigated cropland 2.681 <0.001 0.249 0.113
Residential rainfed croplands 2.049 <0.001 0.223 0.087
Populated rainfed cropland 1.744 <0.001 0.126 0.074
Remote croplands 0.436 0.317 0.000 0.018
Rangeland
Residential rangelands 1.290 0.019 0.002 0.055
Populated rangelands 1.173 0.027 0.008 0.050
Remote rangelands 1.091 0.032 0.005 0.046
Seminatural lands
Residential woodlands 1.592 <0.001 0.231 0.067
Populated woodlands 1.021 0.023 0.127 0.043
Remote woodlands 0.772 0.087 0.097 0.033
Inhabited treeless and barren
lands

1.567 <0.001 0.136 0.066

Wildlands
Wild woodlands 0.541 0.230 0.073 0.023
Wild treeless and barren lands 1.635 <0.001 0.022 0.069
Ice, uninhabited / / / /
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higher soil moisture and precipitaion. Although, the north-western
states of India have soil moisture, resilience is significantly low. In
contrast, western and northern India have low soil moisture and low
resilience. The Western Ghats of India also have a better resilient
ecosystem with higher precipitation.

4. Discussion

The spatial pattern of the anthropogenic biome was derived from
Ellis et al. (2020), who disintegrated the human influence on land use for
agriculture and settlement patterns (Ellis et al., 2020). In recent years,
India’s anthropogenic biomes have undergone significant changes due
to human activities. India has experienced rapid urbanization, leading to
the expansion of cities and towns characterized by high population
density, infrastructure development, and altered land cover (Mandal
et al., 2019). In the agricultural sector, intensive farming practices have
also transformed land with the use of agricultural modernization.
Studies have found that agricultural land has expanded, while wetlands,
lakes, and rivers have depleted, affecting water quality and wildlife
habitats (Singh et al., 2020). Our study has also observed that semi-
natural lands such as woodlands, are decreasing due to overwhelming
deforestation and forest land encroachment. Studies from India has
shown that high population density, road construction and introduction
of cash crops are principal factors behind probable deforestation (Giriraj
et al., 2008; Bera et al., 2020). It has also been observed that over time,
government initiatives and agricultural modernization, including
improvement in irrigation, fertilizers and other artificial inputs have led
to increased agricultural production (Bera et al., 2020). A global study
from 2000 to 2014 also suggests that NPP has improved in India over the
years (Peng et al., 2017). However, factors like water unavailability,
frequent droughts and land use change contributes to the decrease in
NPP. This analysis provides valuable insights into the current state and
trends of these biomes, which can inform decision-making regarding
land use and management practices. Biome with substantial pop-
ulations, like rangelands, have a lower mean NPP, while biomes with
limited populations and more agricultural fields such as croplands have
a higher mean NPP. These findings suggest that water availability is a
key factor in determining the productivity of an ecosystem and that land
use practices such as irrigation can significantly impact NPP values
(Sharma and Goyal, 2018). This underscores the importance of preser-
ving forests and other high NPP biomes for their role in carbon
sequestration and climate regulation. Human activities such as defor-
estation and urbanization, can have significant impacts on the NPP of an

Fig. 2. Mean NPP across anthropogenic biomes in India over 2000–2020.

Table 2
Ecosystem resilience across the anthropogenic biome region of India,
2000–2020.

Anthropogenic biomes Year Driest
SPI3

NPPd NPPm Ri =

NPPd
NPPm

Dense settlements
Urban 2012 − 1.325 250 355 0.704
Mixed settlements 2016 − 1.687 529 678 0.780
Villages
Rice villages 2018 − 1.187 269 373 0.721
Irrigated villages 2002 − 2.078 201 290 0.693
Rainfed villages 2002 − 1.324 245 344 0.712
Pastoral villages 2007 − 2.615 62 89.5 0.693
Croplands
Residential irrigated
cropland

2002 − 2.017 233 290 0.803

Residential rainfed croplands 2002 − 1.869 212 311 0.682
Populated rainfed cropland 2002 − 2.108 173 209 0.828
Remote croplands 2001 − 2.814 100 203 0.493
Rangeland
Residential rangelands 2007 − 2.267 32 66 0.485
Populated rangelands 2007 − 1.964 38 67 0.567
Remote rangelands 2007 − 1.755 33 47 0.702
Seminatural lands
Residential woodlands 2009 − 1.419 716 790 0.906
Populated woodlands 2009 − 1.763 587 670 0.876
Remote woodlands 2014 − 2.726 395 494 0.800
Inhabited treeless and barren
lands

2012 − 1.464 252 302 0.834

Wildlands
Wild woodlands 2014 − 3.100 272 360 0.756
Wild treeless and barren
lands

2012 − 1.647 30 39.1 0.767

Ice, uninhabited / / / / /
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ecosystem. However, it is important to balance these activities with the
need to preserve natural ecosystems and their biodiversity.

Another highlight of this study is the spatial variation of ecosystem
resilience, It shows that a large part of the northern and western part of
India falls under catastrophic to critical non-resilient ecosystem. This
could be due to ecosystem vulnerability in terms of lower NPP and low
precipitation. A similar pattern can be observed in a study conducted by
(Sharma and Goyal, 2018), where moderate NPP values were recorded
in the agricultural lands of the Indo-Gangetic plains and lower Hima-
layas. It is also observed the coastal areas of the Eastern Ghats and the
Konkan region are critically non-resilient while the deltaic region of the
Sundarbans of India falls under a catastrophic non-resilient ecosystem.
The land use change from mangroves to aquaculture and rapid urbani-
zation is a major challenge in these regions (Saha and Paul, 2021; Sinha
et al., 2023). Central and western India shows a mixed pattern of
non-resilient ecosystems. The western parts of northern India are also
having non-resilient ecosystems, which signifies the seriousness of
anthropogenic-induced and climate-driven vulnerability. Previous
studies have suggested that overuse of groundwater has led to depletion
of water table in these region (Swain et al., 2022). Groundwater
recharge in northwestern region is also less due to low rainfall (Taloor

et al., 2022; Taloor et al., 2022). Other studies from India align with this
finding indicating that these areas have low water use efficiency, indi-
cating crop production in these areas will not be able to withstand cli-
matic shocks (Hatfield and Dold, 2019; Wang et al., 2020). The
northeastern part of India has moderate non-resilient ecosystems to
resilient ecosystems due to its forest cover. The valley region of Brah-
maputra is non-resilient due to settlements and recurring floods and
crop failures (Pandey et al., 2022). Overall, it can be suggested that the
soil moisture availability in the biome, forest cover, type of land use,
agricultural practices, and climate shocks are influencing the resilience
of the anthropogenic biomes in India.

The linkage between ecosystem resilience and the most proximate
environmental variables like precipitation, and soil moisture have
identified interesting correlations. The correlation between precipita-
tion and soil moisture is the strongest. Previous studies have shown that
soil moisture retention can last up to 10 months (Hoover et al., 2021)
and therefore with the porosity and percolation capacity of any soil type,
the ecosystem resilience varies. Ecosystem resilience and soil moisture
go hand in hand, which can be studied at the micro level for regional
planning.

Fig. 3. Spatial distribution of ecosystem resilience at anthropogenic biome scale of India, 2000 to 2020.
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5. Conclusion

Different biomes have varying levels of resilience in India. Range-
lands and cropland biomes have the lowest levels of resilience, while
woodlands have the highest level. It is crucial to consider the costs of
adaptive measures (like irrigation and groundwater recharge) to main-
tain productivity. Research on the functioning of ecosystems and their
capacity to handle environmental stressors is essential to take mitigating
actions. As ecosystem resilience and soil moisture support each other, it
is necessary to take care of soil moisture for saving the ecosystem. In
urban areas, rainwater harvesting could be helpful in reducing runoff
and recharge the ground water while in the agricultural land, over
pumping of groundwater should be checked. Further, it is important to
develop sustainable land management practices that can consider the
impact of climate change, mainly in terms of drought and temperature
rise in India.
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Alsalman, A., Harsanyi, E., 2022. Assessing the impacts of agricultural drought (SPI/
SPEI) on maize and wheat yields across Hungary. Sci. Rep. 12 (1), 8838. https://doi.
org/10.1038/s41598-022-12799-w.

Ndayiragije, J.M., Li, F., 2022. Effectiveness of drought indices in the assessment of
different types of droughts, managing and mitigating their effects. Climate 10 (9),
125. https://doi.org/10.3390/cli10090125.

Orimoloye, I.R., Belle, J.A., Orimoloye, Y.M., Olusola, A.O., Ololade, O.O., 2022.
Drought: a common environmental disaster. Atmosphere 13 (1), 111. https://doi.
org/10.3390/atmos13010111.

Pandey, A.C., Kaushik, K., Parida, B.R., 2022. Google earth engine for large-scale flood
mapping using SAR data and impact assessment on agriculture and population of
ganga-brahmaputra basin. Sustainability 14 (7), 4210. https://doi.org/10.3390/
su14074210.

Pathak, H., Mishra, J., Mohapatra, T., 2022. Indian Agriculture after Independence
[Internet]. Indian Council of Agricultural Research, New Delhi.

Peng, D., Zhang, B., Wu, C., Huete, A.R., Gonsamo, A., Lei, L., Ponce-Campos, G.E.,
Liu, X., Wu, Y., 2017. Country-level net primary production distribution and
response to drought and land cover change. Sci. Total Environ. 574, 65–77. https://
doi.org/10.1016/j.scitotenv.2016.09.033.

Ray, R.L., Fares, A., Risch, E., 2018. Effects of drought on crop production and cropping
areas in Texas. Agricultural & Environmental Letters 3 (1), 170037. https://doi.org/
10.2134/ael2017.11.0037.

Reddy, G.P.O., Singh, S.K., 2016. Role of Remote Sensing and Geospatial Technologies in
Climate Smart Agriculture. The Indian Society of Agronomy, New Delhi.

Saha, J., Paul, S., 2021. An insight on land use and land cover change due to tourism
growth in coastal area and its environmental consequences from West Bengal, India.
Spat Inf Res 29 (4), 577–592. https://doi.org/10.1007/s41324-020-00368-0.

Sandi, S.G., Rodriguez, J.F., Saintilan, N., Wen, L., Kuczera, G., Riccardi, G., Saco, P.M.,
2020. Resilience to drought of dryland wetlands threatened by climate change. Sci.
Rep. 10 (1), 13232 https://doi.org/10.1038/s41598-020-70087-x.

Senf, C., 2022. Seeing the system from above: the use and potential of remote sensing for
studying ecosystem dynamics. Ecosystems 25 (8), 1719–1737. https://doi.org/
10.1007/s10021-022-00777-2.

Shahzaman, M., Zhu, W., Bilal, M., Habtemicheal, B.A., Mustafa, F., Arshad, M., Ullah, I.,
Ishfaq, S., Iqbal, R., 2021. Remote sensing indices for spatial monitoring of
agricultural drought in South asian countries. Rem. Sens. 13 (11), 2059. https://doi.
org/10.3390/rs13112059.

Sharma, A., Goyal, M.K., 2018. District-level assessment of the ecohydrological resilience
to hydroclimatic disturbances and its controlling factors in India. J. Hydrol. 564,
1048–1057. https://doi.org/10.1016/j.jhydrol.2018.07.079.

Singh, S., Bhardwaj, A., Verma, V.K., 2020. Remote sensing and GIS based analysis of
temporal land use/land cover and water quality changes in Harike wetland
ecosystem, Punjab, India. J. Environ. Manag. 262, 110355 https://doi.org/10.1016/
j.jenvman.2020.110355.

Sinha, R.K., Eldho, T.I., Subimal, G., 2023. Assessing the impacts of land use/land cover
and climate change on surface runoff of a humid tropical river basin in Western
Ghats, India. Int. J. River Basin Manag. 21 (2), 141–152. https://doi.org/10.1080/
15715124.2020.1809434.

Sun, J., Yue, Y., Niu, H., 2021. Evaluation of NPP using three models compared with
MODIS-NPP data over China. PLoS One 16 (11), e0252149. https://doi.org/
10.1371/journal.pone.0252149.

Swain, S., Taloor, A.K., Dhal, L., Sahoo, S., Al-Ansari, N., 2022. Impact of climate change
on groundwater hydrology: a comprehensive review and current status of the Indian
hydrogeology. Appl. Water Sci. 12 (6), 120. https://doi.org/10.1007/s13201-022-
01652-0.

Taloor, A.K., Goswami, A., Bahuguna, I.M., Singh, K.K., Kothyari, G.C., 2022. Remote
sensing and GIS applications in water cryosphere and climate change. Remote Sens.
Appl.: Society and Environment 28, 100866. https://doi.org/10.1016/j.
rsase.2022.100866.

United Nations, 2017. World Population Prospects the 2017 Revision. Key Findings and
Advance Tables. Department of Economic and Social Affairs Population Division,
New York. Working Paper No. ESA/P/WP/248.

Vicente-Serrano, S.M., Quiring, S.M., Peña-Gallardo, M., Yuan, S., Domínguez-Castro, F.,
2020. A review of environmental droughts: increased risk under global warming?
Earth Sci. Rev. 201, 102953 https://doi.org/10.1016/j.earscirev.2019.102953.

Vogel, E., Donat, M.G., Alexander, L.V., Meinshausen, M., Ray, D.K., Karoly, D.,
Meinshausen, N., Frieler, K., 2019. The effects of climate extremes on global
agricultural yields. Environ. Res. Lett. 14 (5), 054010 https://doi.org/10.1088/
1748-9326/ab154b.

Wang, W., Wang, J., Cao, X., 2020. Water use efficiency and sensitivity assessment for
agricultural production system from the water footprint perspective. Sustainability
12 (22), 9665. https://doi.org/10.3390/su12229665.

Xu, H., Wang, X., Zhao, C., Yang, X., 2018. Diverse responses of vegetation growth to
meteorological drought across climate zones and land biomes in northern China
from 1981 to 2014. Agric. For. Meteorol. 262, 1–13. https://doi.org/10.1016/j.
agrformet.2018.06.027.

Zheng, Y., Wu, B., Zhang, M., Zeng, H., 2016. Crop phenology detection using high
spatio-temporal resolution data fused from SPOT5 and MODIS products. Sensors 16
(12), 2099. https://doi.org/10.3390/s16122099.

S. Shaw et al. Quaternary Science Advances 15 (2024) 100214 

8 

https://doi.org/10.3390/rs12182915
https://doi.org/10.1038/s41598-021-96742-5
https://doi.org/10.1038/s41598-021-96742-5
https://doi.org/10.3390/s8106132
https://doi.org/10.3390/s8106132
https://doi.org/10.1016/j.gloplacha.2016.06.011
https://doi.org/10.1007/978-981-19-0763-0_2
https://doi.org/10.1007/978-981-19-0763-0_2
https://www.frontiersin.org/articles/10.3389/fpls.2019.00103
https://www.frontiersin.org/articles/10.3389/fpls.2019.00103
https://doi.org/10.1111/1365-2745.13681
https://doi.org/10.1016/j.agrformet.2019.107707
https://doi.org/10.1007/s11676-020-01155-1
https://doi.org/10.1038/s41598-019-55067-0
https://doi.org/10.3390/rs13061103
https://doi.org/10.1175/1520-0477(2001)082<1949:OSTFGV>2.3.CO;2
https://doi.org/10.1175/1520-0477(2001)082<1949:OSTFGV>2.3.CO;2
https://doi.org/10.1007/978-981-15-4327-2_1
https://doi.org/10.1007/978-981-15-4327-2_1
https://doi.org/10.1016/j.scitotenv.2015.06.138
https://doi.org/10.1016/j.scitotenv.2015.06.138
https://doi.org/10.1007/s12040-015-0545-1
https://doi.org/10.1016/j.ecolind.2021.108146
https://doi.org/10.1016/j.ecolind.2021.108146
https://doi.org/10.3390/su13031318
https://doi.org/10.3390/su13031318
https://doi.org/10.1007/s12524-019-01020-7
https://doi.org/10.3390/rs14061310
https://doi.org/10.3390/rs14061310
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref30
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref30
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref31
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref31
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref31
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref32
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref32
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref32
https://doi.org/10.1038/s41598-022-12799-w
https://doi.org/10.1038/s41598-022-12799-w
https://doi.org/10.3390/cli10090125
https://doi.org/10.3390/atmos13010111
https://doi.org/10.3390/atmos13010111
https://doi.org/10.3390/su14074210
https://doi.org/10.3390/su14074210
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref37
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref37
https://doi.org/10.1016/j.scitotenv.2016.09.033
https://doi.org/10.1016/j.scitotenv.2016.09.033
https://doi.org/10.2134/ael2017.11.0037
https://doi.org/10.2134/ael2017.11.0037
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref40
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref40
https://doi.org/10.1007/s41324-020-00368-0
https://doi.org/10.1038/s41598-020-70087-x
https://doi.org/10.1007/s10021-022-00777-2
https://doi.org/10.1007/s10021-022-00777-2
https://doi.org/10.3390/rs13112059
https://doi.org/10.3390/rs13112059
https://doi.org/10.1016/j.jhydrol.2018.07.079
https://doi.org/10.1016/j.jenvman.2020.110355
https://doi.org/10.1016/j.jenvman.2020.110355
https://doi.org/10.1080/15715124.2020.1809434
https://doi.org/10.1080/15715124.2020.1809434
https://doi.org/10.1371/journal.pone.0252149
https://doi.org/10.1371/journal.pone.0252149
https://doi.org/10.1007/s13201-022-01652-0
https://doi.org/10.1007/s13201-022-01652-0
https://doi.org/10.1016/j.rsase.2022.100866
https://doi.org/10.1016/j.rsase.2022.100866
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref51
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref51
http://refhub.elsevier.com/S2666-0334(24)00052-2/sref51
https://doi.org/10.1016/j.earscirev.2019.102953
https://doi.org/10.1088/1748-9326/ab154b
https://doi.org/10.1088/1748-9326/ab154b
https://doi.org/10.3390/su12229665
https://doi.org/10.1016/j.agrformet.2018.06.027
https://doi.org/10.1016/j.agrformet.2018.06.027
https://doi.org/10.3390/s16122099

	Variation of ecosystem resilience across the anthropogenic biomes of India: A comprehensive analysis
	1 Introduction
	2 Data and methods
	2.1 Study area
	2.2 Datasets and methods
	2.2.1 Anthropogenic biome
	2.2.2 Net Primary Productivity
	2.2.3 Precipitation and soil moisture datasets
	2.2.4 Computation of standardized precipitation index (SPI3) at a three-month time scale
	2.2.5 Computation of ecosystem resilience


	3 Result
	3.1 Spatial distribution and land cover area of the anthropogenic biome
	3.2 Trend of NPP
	3.3 Net primary productivity across different anthropogenic biomes
	3.4 Ecosystem resilience across anthropogenic biomes
	3.5 Ecosystem resilience across anthropogenic biomes
	3.6 Association of ecosystem resilience with precipitation and soil moisture

	4 Discussion
	5 Conclusion
	Ethical approval
	Consent for publication
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


