
ARTICLE

Investigating the association between groundwater
contaminants and hypertension risk in India: a machine
learning-based analysis
Sourav Biswas 1, Aparajita Chattopadhyay 1✉, Kathrin Schilling 2 and Ayushi Das 3

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2025

BACKGROUND: One-fourth of Indians are hypertensive, and the majority relies on groundwater for drinking. But the role of
groundwater physicochemical properties and contamination in hypertension remains understudied.
OBJECTIVE: The study investigates the association between physicochemical groundwater characteristics andcontaminants and
hypertension risk in India.
DATA: This study used data from the fifth round of the National Family Health Survey (NFHS-5 collected 2019–2021), including
health, socio-demographics, and food and dietary information (n= 712,666 individuals). The physicochemical characteristics of
groundwater data were derived from the Central Groundwater Board (CGWB, 2019–2021). This groundwater data from raster maps
was linked to NFHS-5 records using cluster shapefiles and merging them with individual records via cluster IDs.
METHODS: Bivariate and multivariable regressions were used to identify factors associated with hypertension at the individual
level. Moran’s I statistics, Local Indicator of Spatial Association (LISA) cluster maps, and the Spatial Error Model (SEM) were used at
district levels to investigate the spatial association. Machine learning models, including Artificial Neural Networks (ANN), Random
Forest and Extreme Gradient Boosting (XGBoost), were used to predict hypertension risk zones.
RESULTS: Physicochemical drinking water composition is a key factor in hypertension risk. Elevated groundwater pH (>8.5,
Adjusted Odds Ratio (AOR): 2.12), electrical conductivity (>300 μS/cm, AOR: 1.06), sulphate (>200mg/L, AOR: 1.16), arsenic
(>0.01 mg/L, AOR: 1.09), nitrate (>45mg/L, AOR: 1.07), and magnesium (>30mg/L, AOR: 1.03) are associated to higher odds of
hypertension. The Random Forest model demonstrated the highest predictive performance, with a coefficient of determination (R²)
of 0.9970, mean absolute error (MAE) of 0.0012, and mean squared error (MSE) of 0.0077. It effectively identified high-risk zones in
the northwestern (Delhi, Punjab, Haryana, and Rajasthan) and eastern (West Bengal and Bihar) regions of India.
IMPACT:

● This study highlights how important groundwater quality is in determining the incidence of hypertension, pointing to
groundwater physicochemical properties and contaminants such as electrical conductivity, sulphate, arsenic, nitrate, and
magnesium as essential factors. Our research is the first of its kind to comprehensively map hypertension risk zones using
machine learning models and geospatial analysis. The findings highlight that water quality is a modifiable risk factor,
reinforcing the need for improved drinking water supply systems, regular water quality testing, and targeted interventions in
high-risk regions. This study emphasizes the importance of intersectoral collaborations to enhance public health outcomes.
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INTRODUCTION
Non-communicable diseases (NCDs) account for 41 million deaths
globally each year, representing 74% of all deaths [1]. Of these, 17
million occurr before age 70, predominantly in low- and middle-
income countries (LMICs), which accounts for 86% of these
premature deaths and 77% of all NCD-related deaths [1].
Hypertension, also known as high blood pressure, is the most

common NCD, affecting around 1.13 billion people globally [2]. It
is particularly prevalent in LMICs [2]. Hypertension is diagnosed
when the systolic blood pressure is 140mmHg or higher or the
diastolic blood pressure is 90mmHg or higher, written as ‘140/
90mmHg’ [3]. In 2007, the Global Action Plan (GAP) was
established to help prevent and handle NCDs like hypertension
[4]. This plan also supports Sustainable Development Goal
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(SDG) 3.4, which targets a 25% reduction in NCD-related deaths by
2025 [5].
In India, hypertension rates vary widely across states and

demographic. The National Nutrition Monitoring Bureau study
(NNMB) from 2007/2008 reported hypertension prevalence of
27.1% among men and 26.4% among women in tribal areas, with
Odisha (50–54.4%) and Kerala (36.7–45%) having the highest
prevalence and Gujarat the lowest (7–11.5%) [6]. A 2014/
2015 study in rural areas of Kerala and Andhra Pradesh observed
that 47.7% of overweight individuals and 39.6% of those with
higher waist circumference were hypertensive [7]. Another cross-
sectional study reported high hypertension prevalence in West
Bengal (29.5%) and Kerala (28.9%) but lower in Madhya Pradesh
(16%) and Uttar Pradesh (19%) [8]. In 2015/2016, hypertension
among people aged 15–49 was 11.3%, with men having a 4%
higher prevalence than women, and urban areas (12.5%) showing
slightly higher rates than rural areas (10.6%). The prevalence
across states varied, ranging from 8.2% in Kerala to 20.3%
in Sikkim [9]. The increase in hypertension has increased over
the past decade and this increase is likely to continue due
to socioeconomic shifts, environmental factors, and lifestyle
changes [2].
The association of physicochemical groundwater composition,

dietary habits, and hypertension risk is important but complex.
Groundwater is the primary drinking water source for 85% of
India’s population [10], yet excessive usage raises sustainability
and environmental concerns [11]. Dietary patterns have been
associated with various other health outcomes, including type 2
diabetes [12–15], anaemia [16–19], and breast cancer [20–22].
Understanding the relationship between physicochemical ground-
water composition and hypertension risk is crucial for effectively
addressing the complexity of this health issue.
A seminal study in West Bengal found a strong association

between groundwater arsenic levels and hypertension [23].
People in arsenic-endemic areas had nearly three times higher
risk of hypertension compared to non-endemic areas [23]. A study
in Bangladesh investigated the relationship between drinking
water salinity and hypertension and found that people exposed to
slight (slightly saltier than rainwater) and medium (moderately
saltier than rainwater) or higher (much saltier than rainwater)
levels of salinity have 1.28 times and 1.65 times greater risk of
hypertension, respectively compared to those consuming drinking
water with no salinity [24]. However, both studies primarily
focused on single factors—arsenic contamination or salinity—
without considering interactions with other physicochemical
groundwater factors and dietary pattern that might increase
hypertension risk.

Several studies have explored the socio-demographic charac-
teristics, dietary patterns, and hypertension [9, 25]. Current
research largely overlooked the combined effect of groundwater
composition when used as primary drinking water source. Our
study aims to clarify how physicochemical groundwater composi-
tion including known contaminants (e.g. arsenic) and dietary
pattern together influence hypertension risk. We used machine
learning techniques to predict hypertension risk zones across India
based on identified environmental and health predictors. By
identifying high-risk areas can help policymakers and healthcare
professionals target interventions to mitigate the burden of
hypertension and improve public health.

DATA AND METHODS
Data
Groundwater data. The analysis in this study is based on
secondary data from the Central Groundwater Board (CGWB)
under the Ministry of Jal Shakti, Department of Water Resources,
River Development, and Ganga Rejuvenation. CGWB provides data
from 29,065 monitoring sites across India collected between 2019
and 2021. The Indian states of Jammu & Kashmir, Ladakh, Sikkim,
Nagaland, Manipur, Mizoram, Tripura and Lakshadweep have no
data, and we excluded these states and union territories from our
analysis. Table 1 provides an overview of the parametric values for
drinking water compositions listed by the various countries and
organizations [26–31].

Socio-demographic data. Food and dietary habits, socio-demo-
graphic, and hypertension data were leveraged from the National
Family Health Survey (NFHS-5) conducted between 2019 and
2021 in India [32]. The survey included 28,43,917 individuals
from 6,36,669 households across 28 states, 8 union territories, and
707 districts. Out of the total sample, 7,65,993 individuals aged
0–14 years were excluded because they were not tested, and
2,25,079 individuals declined blood sample testing. Additionally,
10,88,829 individuals who did not use groundwater for drinking
and 39,010 individuals from hill states (where groundwater data
was unavailable) were also excluded. The final sample size for
analysis was 7,12,666 individuals (Fig. 1). Data included informa-
tion on demographics, socioeconomic status, maternal and child
health, reproductive health, and family planning. The analysis
focused on men and women aged 15–95+ years, using data from
the Person Recode (IAPR7DDT) accessed through the Demo-
graphic and Health Survey (DHS). To assess hypertension, blood
pressure was measured using an Omron Blood Pressure Monitor.
Three blood pressure readings were taken within a five-minute

Table 1. Acceptable limits for drinking water quality parameters from Bureau of Indian Standards (BIS), World Health Organization (WHO), European
Union (EU), China, and United States Environmental Protection Agency (US. EPA).

Parameters BIS (India) WHO EU China US EPA

Arsenic (mg/L) 0.01 0.01 0.01 0.01 0.01

Nitrate (mg/L) 45 50 50 20 10

Fluoride (mg/L) 1.0 1.5 1.5 1.0 4.0

Sulphate (mg/L) 200 500 250 250 250

Total Dissolved
Solids (mg/L)

500 600 No limit specified 1000 500

Chloride (mg/L) 250 No guideline 250 250 250

Total Hardness (mg/L) 300 No guideline No limit specified 450 No limit specified

Calcium (mg/L) 75 No guideline No limit specified No limit specified No limit specified

Magnesium (mg/L) 30 No guideline No limit specified No limit specified No limit specified

pH 6.5–8.5 6.5–8.5 6.5–9.5 6.5–8.5 6.5–8.5

Electrical
Conductivity (μS/cm)

300 1500 2500 Not specified No limit specified
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interval. Individuals with an average systolic blood pressure (SBP)
over 130mm Hg and/or diastolic blood pressure (DBP) over
85mm Hg were classified as hypertensive and advised to consult a
doctor. The response rate for blood pressure measurement was
91.3% among women and 81.8% among men. Participants were
asked if they had been diagnosed with hypertension on two or
more occasions by a doctor, and if so, whether they were taking
prescribed medication to lower their blood pressure.

Methods
Merging of CGWB water data and NFHS-5 data. The NFHS-5
survey collected data from 30,197 clusters, with socio-
demographic and health information provided in Stata format
and cluster locations available as a shapefile. The cluster
identifier (v001) is common in both files. To integrate ground-
water data with NFHS-5 data, we used groundwater quality data
from 29,065 monitoring sites, which included latitude and
longitude coordinates. First, the study applied the Inverse
Distance Weighting (IDW) interpolation method [33] to create
raster surfaces for the 11 groundwater quality parameters. Using
ArcGIS, the study overlaid the NFHS-5 cluster shapefile onto
these raster layers and extracted groundwater parameter values
for each cluster. To account for spatial uncertainty, the spatial
resolution of NFHS-5 clusters and the density of groundwater
monitoring sites were considered, ensuring that the extracted
values accurately represented local groundwater conditions.
Finally, the extracted groundwater parameter values were
merged with the NFHS-5 Stata file using the common cluster
identifier (v001), creating the final dataset.

Outcome variable. For our study, we used hypertension as
primary health outcome. Hypertension was diagnosed if systolic
blood pressure (SBP) was ≥140mmHg and/or diastolic blood
pressure (DPB) was ≥90mmHg, or if participants reported using
medication to control blood pressure. The dichotomous variable,
hypertension, was defined as 1= hypertensive, otherwise= 0.

Explanatory variables. This study examined factors associated with
hypertension. The factors included groundwater quality parameters
(including contaminants), socioeconomic-demographic characteris-
tics, and dietary habits. Groundwater quality parameters included
pH, calcium, magnesium, sulphate, chloride, total hardness, total
dissolved solids, electrical conductivity and contaminants nitrate,
fluoride and arsenic. Socioeconomic-demographic variables
included age, wealth index, residence, and geographic region.

Dietary habits included consumption of milk, pulses/beans, vege-
tables, and non-vegetarian foods.

Statistical analysis. The study initially performed bivariate analysis
techniques and Chi-square test to explore the relationships
between hypertension and various factors, including groundwater
quality parameters, socio-demographic characteristics, and dietary
habits. Bivariate local Moran’s I statistics, Local Indicators of Spatial
Association (LISA) cluster map and scatter plots were generated
using GeoDa 1.22 software to examine the association between
hypertension and predictor variables at the district level. Moran’s I, a
metric of spatial autocorrelation akin to Pearson’s correlation
coefficient, was used to gauge spatial dependencies among
districts. To delineate spatial connections, a spatial weight matrix
was constructed using the queen contiguity method [34], which
defines spatial relationships based on shared borders, ensuring a
comprehensive representation of district-to-district connections.
Each district was uniquely identified by a code, and the spatial
weight matrix encapsulated the geographical interdependencies.
The deliberate choice of using queen contiguity method was based
on its ability to account for shared borders and provide a well-
rounded spatial weight matrix for subsequent analyses. Significance
in the spatial analysis was determined at the 0.05 significance level
(p-values). This significance threshold was chosen to ensure the
robust identification of spatial patterns and associations, facilitating
meaningful conclusion about the spatial dynamics of hypertension
risk and predictor variables across the diverse landscape of India.
Moran’s I calculations were performed utilizing the following
formulas:

Bivariate Local Moran’s IðIijÞ ¼
ðxi � xÞ ðPn

j¼1wij ðyi � yÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1ðxj � xÞ2Pn
j¼1ðyj � yÞ2

q

Here xi : is the percentage of hypertension in district i, x: is the
mean of hypertension across all districts, yi : is the percentage of
predictor variable in district j, y: is the mean of predictor variable
across all districts, wij : is the spatial weight between districts i and
j, and the sums are over all districts j in the dataset.
The Moran’s I value ranges from−1, indicating perfect dispersion,

to +1, indicating perfect correlation. A value of zero suggests a
random spatial pattern. Negative values signify negative spatial
autocorrelation, indicating dissimilarity among closely associated
points, while positive values indicate positive spatial autocorrela-
tion, signifying the clustering of points with similar attribute values
in close proximity. The LISA cluster map serves as a visual

Fig. 1 Flow chart showing the steps to select representative samples.
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representation of spatial patterns, categorizing districts into four
groups: “high-high,” “low-low,” “low-high,” and “high-low,” based on
the prevalence of hypertension relative to neighbouring districts.
“High-high” clusters depict districts with consistently high rates of
hypertension prevalence, while “low-low” clusters denote districts
with consistently low rates. Conversely, “low-high” clusters indicate
districts with a low prevalence of hypertension surrounded by
neighbours with high prevalence, and “high-low” clusters represent
districts with a high prevalence of hypertension surrounded by
neighbours with a low prevalence of hypertension. This classifica-
tion identifies spatial clusters and geographical variations in
hypertension prevalence across different regions.
Unadjusted and adjusted logistic regression models were used to

ascertain groundwater’s physicochemical characteristics and con-
taminants and other socio-demographic and dietary habit pre-
dictors with hypertension. Results were reported in terms of both
unadjusted odds ratios (UORs) and adjusted odds ratios (AORs) with
95% confidence intervals (CIs). To evaluate the performance of the
classification model, key diagnostic metrics were calculated,
including sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), false positive rate (FPR), false
negative rate (FNR), and overall accuracy. Sensitivity measured the
proportion of true positive cases correctly identified, while specificity
indicated the proportion of true negative cases correctly classified.
PPV and NPV represented the probabilities that positive and
negative predictions were correct, respectively. FPR captured the
proportion of negative cases incorrectly classified as positive, and
FNR reflected the proportion of positive cases missed by the model.
The study used regression models to examine the key variables

associated with hypertension. Initially, spatial Ordinary Least
Square (OLS) regression was used to assess the extent of
autocorrelation in the error term. As the OLS regression
confirmed spatial autocorrelation in its error term concerning
the outcome variable, we further estimated spatial lag model
(SLM) and Spatial Error Model (SEM). The underlying assumption
of the spatial lag model posits that observations of the dependent
variables are influenced by neighbouring areas, whereas the
spatial error model incorporates the effects of variables not
present in the regression model but impacting the outcome
variable. The main difference between the two models is the use
of spatial dependence in the error term, with the spatial lag
model no considering spatial dependence [34]. Subsequently,
based on the Akaike Information Criterion (AIC) values, the spatial
error model seems to be the best-fitting model for our study. A
typical spatial lag model can be written as follows:

Yi ¼ δ
X

j≠1

WijYj þ βXj þ εj

Here Yi: denotes the prevalence of hypertension for the ith district,
δ: is the spatial autoregressive coefficient, Wij: denotes the spatial
weight of proximity between district i and j, Yj: is the prevalence
of hypertension in the jth district, β: denotes the coefficient, Xj: is
the predictor variable and εj: is the residual.
The Spatial Error Model takes into consideration the impact of

omitted variables that are not directly incorporated into the model
but could substantially affect the analysis. Formally, a Spatial Error
Model (SEM) can be articulated as follows:

Yi ¼ βXj þ λ
X

j≠1

WijYjεj þ εj

Here Yi: denotes the prevalence of hypertension for the ith district,
λ: is the spatial autoregressive coefficient, Wij: denotes the spatial
weight of proximity between district i and j, Yj: is the prevalence
of hypertension in the jth district, β: denotes the coefficient, Xj: is
the predictor variable and εj: is the residual [35].
To examine spatial heterogeneity in the association between

groundwater physicochemical parameters and contaminants and

hypertension risk, the study employed Geographically Weighted
Regression (GWR) model [36, 37]. Unlike traditional global
regression models, GWR allows regression coefficients to vary
across geographic locations, capturing localized relationships
between independent variables and hypertension prevalence.
The model is specified as:

Yi ¼ β0ðui; viÞ þ
Xp

k¼1

βkðui; viÞXki þ εi

Where Yi represents the prevalence of hypertension in districts i, Xki
includes groundwater physicochemical properties and contaminants
(e.g., pH, Nitrate, Fluoride, Arsenic), βkðui; viÞ are location-specific
coefficients, βoðui; viÞ is the intercept indicating baseline hyperten-
sion prevalence, and εi is the error term. The GWR model provides
key outputs: regression coefficients (βk ), which indicate how the
relationship between groundwater contamination and hypertension
varies spatially; local R2 values, measuring how well predictors
explain hypertension prevalence at different locations [36]; standar-
dized residuals, identifying areas where model predictions deviate
from observed values; and the intercept (β0), representing the
baseline hypertension prevalence across regions. A higher local R2

suggests stronger spatial associations, whereas lower values indicate
weaker relationships, possibly due to unmeasured local factors. The
model was implemented using an adaptive bandwidth selection
based on the AIC for optimal performance [37].
The study utilized three supervised machine learning

models—Artificial Neural Networks (ANN), Random Forest
(RF), and Extreme Gradient Boosting (XGBoost)—to predict
hypertension risk zones. ANN, inspired by the human brain’s
neural structure, uses interconnected nodes to identify
patterns and generate predictions. ANN applied backpropaga-
tion and a sigmoid activation function to adjust weights
iteratively until convergence in this study [38]. Random Forest
combines multiple decision trees to reduce overfitting and
improve accuracy, with trees operating independently in
parallel [39]. XGBoost, an ensemble algorithm, sequentially
builds decision trees to minimize prediction errors by
optimizing a loss function through gradient descent, incorpor-
ating L1 and L2 regularization to control overfitting [40]. The
dataset was divided into train and test set by 80:20 ratio. The
machine learning models were fitted only on the train set and
test set was kept for testing the models for accuracy. A 10-fold
cross-validation was used to optimize the hyperparameters.
The Artificial Neural Network (ANN) model was compiled using
the Adam optimizer, with mean squared error (MSE) as the loss
function and mean absolute error (MAE) as the performance
metric. For the XGBoost (XGB) model, the XGBRegressor was
initialized with the objective function reg:squarederror and a
fixed random state [40] to ensure reproducibility. The Random
Forest (RF) model was implemented using its default
parameters, including 100 trees (n_estimators= 100) and
squared error as the criterion (criterion= ‘squared_error’) for
measuring the quality of splits. Using data from NFHS-5 and
CGWB, the study predict hypertension in 28,501 cluster points
in the Python package, creating the final map using QGIS
3.18.1. Figure 2 illustrates the conceptual framework for our
machine-learning-based hypertension prediction model. The
whole statistical analysis was conducted using StataSE 16 soft-
ware. Figure 3 shows the conceptual framework that directed
the analysis of our study.

RESULTS
Spatial distribution of physicochemical groundwater
parameters and groundwater contaminants
The study analysed physicochemical groundwater parameters and
groundwater contaminants from 29,065 CGBW monitoring wells,
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Fig. 3 Conceptual framework of the study.

Fig. 2 Model development framework: machine-learning-based framework for developing the hypertension risk zone prediction model in
India.
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revealing distinct spatial distribution patterns (Fig. 4). Using IDW
interpolation, the study identified spatial hotspots of various
physicochemical groundwater parameters and groundwater con-
taminants, highlighting groundwater quality variations nationwide.
High arsenic levels were observed in the northwestern, eastern, and
northeastern regions, predominantly within the Ganga, Indus, and
Brahmaputra river basins. High levels of nitrate, magnesium, calcium,

fluoride, sulphate, chloride, total hardness, total dissolved solids, and
electrical conductivity were detected in the northwest and south-
eastern parts of India, often exceeding Bureau of Indian Standards
(BIS) thresholds (Table 1). The pH map indicated basic conditions in
the northwestern, western, southwestern, and eastern regions, while
slightly acidic conditions were found in central Indian regions,
reflecting potential geochemical variations across these areas.

Fig. 4 Spatial distribution of various groundwater physicochemical properties and contaminants across India.
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Hypertension by background characteristics
Table 2 shows the bivariate analysis of physicochemical character-
istics and contaminants of groundwater, socio-demographic factors,
and hypertension. Hypertension affected 23.4% of individuals with
arsenic levels above 0.01mg/L, compared to 20.96% in areas at or
below this level. Similarly, 22.56% of individuals were hypertensive
in areas with nitrate levels above 45mg/L, compared to 21.14% in
areas below 45mg/L nitrate. For calcium, hypertension prevalence
was 20.26% in areas with levels above 75mg/L, compared to
22.13% in areas at or below this threshold. Areas with total
hardness exceeding 300mg/L had 21.72% of individuals with
hypertension, compared to 21.21% in areas with hardness at or
below 300mg/L. For water pH, 26.12% of individuals were
hypertensive in areas with pH above 8.5, 21.16% in areas between
6.5 and 8.5, and 22.55% in areas at or below pH 6.5.
Table 3 presents the Bivariate Moran’s I statistics, summarizing

the spatial associations between hypertension prevalence and
groundwater physicochemical properties and contaminants. Zonal
statistics were used to compute the mean values of groundwater

Table 2. Bivariate association between physicochemical groundwater
parameters, groundwater contaminants and other socio-demographic
factors with hypertension risk in India.

Selected background
characteristics

Hypertension

Yes
(1,52,368)

No
(5,60,298)

p-
value

Arsenic

≤0.01mg/L 20.96 79.04 0.0001

>0.01mg/L 23.35 76.65

Nitrate

≤45mg/L 21.14 78.86 0.0001

>45mg/L 22.56 77.44

Magnesium

≤30mg/L 21.32 78.68 0.0004

>30mg/L 21.82 78.18

Calcium

≤75mg/L 22.13 77.87 0.0001

>75mg/L 20.26 79.74

Fluoride

≤1mg/L 21.31 78.69 0.0006

>1mg/L 21.45 78.55

Sulphate

≤200mg/L 20.61 79.39 0.0002

>200mg/L 22.87 77.13

Chloride

≤250mg/L 21.24 78.76 0.0002

>250mg/L 21.78 78.22

Total hardness

≤300mg/L 21.21 78.79 0.0001

>300mg/L 21.72 78.28

Total dissolved solids

≤500mg/L 21.48 78.52 0.0003

>500mg/L 21.28 78.72

Electrical conductivity

≤300 μS/cm 20.16 79.84 0.0004

>300 μS/cm 22.12 77.88

Water pH

≤6.5 22.55 77.45 0.0001

6.5–8.5 21.16 78.84

>8.5 26.12 73.88

Age groups

15–24 years 4.79 95.21 0.0002

25–34 years 10.53 89.47

35–44 years 19.77 80.23

45–54 years 30.53 69.47

55–64 years 39.96 60.04

65 and above 48.79 51.21

Sex

Male 22.66 77.34 0.0001

Female 20.28 79.72

Wealth Index

Poorest 17.94 82.06 0.0001

Poorer 18.75 81.25

Middle 20.93 79.07

Table 2. continued

Selected background
characteristics

Hypertension

Yes
(1,52,368)

No
(5,60,298)

p-
value

Richer 23.16 76.84

Richest 26.07 73.93

Milk/curd consumption

Never 21.08 78.92 0.0004

Daily 23.12 76.88

Weekly 20.84 79.16

Occasionally 20.92 79.08

Pulses/beans consumption

Never 20.84 79.16 0.0002

Daily 22.36 77.64

Weekly 21.02 78.98

Occasionally 20.73 79.27

Vegetarian diet

Never 21.92 78.08 0.0002

Daily 21.13 78.87

Weekly 21.05 78.95

Occasionally 20.94 79.06

Non-vegetarian diet

Never 21.24 78.76 0.0001

Daily 22.32 77.68

Weekly 21.32 78.68

Occasionally 20.88 79.12

Place of residence

Urban 24.18 75.82 0.0001

Rural 20.45 79.55

Geographic region

North 22.77 77.23 0.0001

Central 20.65 79.35

East 18.71 81.29

Northeast 18.02 81.98

West 20.01 79.99

South 26.16 73.84

Total 21.38 78.62
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physicochemical properties and contaminants indicators at the
district level, while hypertension data were derived from the
NFHS-5 dataset. The updated results indicate positive spatial
autocorrelations between hypertension and arsenic (0.03, Moran’s
I), nitrate (0.09), fluoride (0.03), sulphate (0.05), chloride (0.02), and
water pH (0.05). In contrast, negative spatial autocorrelations were
observed for magnesium (−0.03), calcium (−0.01), total hardness
(−0.01), total dissolved solids (−0.13), and electrical conductivity
(−0.02).
The LISA cluster analysis (Fig. 5) reveals significant high-high

clusters, indicating regions where groundwater contaminants and
hypertension prevalence are simultaneously elevated. Arsenic and
hypertension high-high clusters are observed in 29 districts
primarily located in Punjab, Haryana, and parts of Andhra Pradesh.
Similarly, nitrate and hypertension high-high clusters are found in
54 districts, covering parts of Punjab, Haryana, Andhra Pradesh,
Telangana, Tamil Nadu, and Karnataka. Magnesium and hyperten-
sion high-high clusters are identified in 44 districts, mainly in
parts of Punjab, Telangana, Andhra Pradesh, Tamil Nadu, and
Karnataka, while calcium and hypertension high-high clusters are
present in 43 districts, covering similar regions. Fluoride and
hypertension high-high clusters are noted in 57 districts, spanning
Punjab, Andhra Pradesh, Telangana, Tamil Nadu, and Karnataka.
Additionally, sulphate (44 districts), chloride (40 districts), total
hardness (45 districts), total dissolved solids (38 districts), and
electrical conductivity (47 districts) exhibit high-high clustering
with hypertension, predominantly in Punjab, Andhra Pradesh,
Telangana, Tamil Nadu, and Karnataka. pH and hypertension high-
high clusters are observed in 38 districts, mainly in Punjab,
Haryana, and Karnataka. These spatial patterns suggest a strong
association between groundwater contamination and hyperten-
sion prevalence.

Factors associated with hypertension
Table 4 shows the odds ratios from the logistic regression model
for factors associated with hypertension. Three logistic models are
analysed: Model 1 includes only groundwater parameters as
independent variables; Model 2 incorporates socio-demographic,
food and dietary habits, and spatial factors; and Model 3, the
adjusted model, encompasses all factors. The odds ratios highlight
significant associations between groundwater quality parameters,
contaminants, and hypertension. The groundwater parameters
with the strongest effects on hypertension include water pH and
sulphate levels. Individuals in areas with a water pH above 8.5
have 2.12 times higher odds of hypertension compared to those in
areas with pH ≤6.5, making it the most impactful factor. Sulphate
levels above 200mg/L are associated with 1.16 times higher odds
of hypertension. Arsenic levels above 0.01mg/L increase hyper-
tension odds by 1.09 times, and nitrate levels above 45mg/L are

linked to 1.07 times higher odds. Elevated electrical conductivity
above 300 μS/cm increases hypertension odds by 1.06 times,
while magnesium levels above 30mg/L raise the odds by 1.03
times. In contrast, some groundwater parameters appear to
reduce hypertension odds. Calcium levels above 75mg/L are
associated with 0.92 times lower odds, and total dissolved solids
above 500 mg/L are linked to 0.94 times lower odds. Individuals in
areas with a pH between 6.5 and 8.5 have 0.88 times lower odds of
hypertension compared to areas with pH ≤6.5. The findings
highlight the differential impacts of groundwater quality para-
meters on hypertension risk. Specifically, elevated pH and sulfate
levels are found to have a significant influence, while higher
concentrations of calcium and total dissolved solids seem to offer
a protective effect.
Table 5 provides key performance metrics for a classification

model, and the accompanying Receiver Operating Characteristic
(ROC) curve (Fig. 6) helps visualize its overall predictive ability. The
model’s sensitivity (78.2%) indicates that it correctly identifies
78.2% of true positive cases, while its specificity (90.5%) reflects a
strong ability to correctly classify negative cases. The positive
predictive value (67.8%) shows that 67.8% of predicted positives
are actual positives, whereas the negative predictive value (92.3%)
reflects that 92.3% of predicted negatives are true negatives. The
false positive (9.5%) and false negative rates (21.8%) indicate that
the model has a relatively lower proportion of incorrect positive
classifications but misses about 21.8% of actual positive cases. The
overall accuracy (88.7%) suggests strong classification perfor-
mance. The ROC curve further supports this by illustrating the
trade-off between sensitivity and specificity at different thresh-
olds. The area under the ROC curve (AUC= 0.7526) suggests that
the model has moderate discriminative ability, meaning it
performs significantly better than random classification (AUC=
0.5) but leaves room for improvement.

Spatial analysis of hypertension correlates in India: findings
from spatial error model
Table 6 presents the spatial determinants and influential factors
affecting hypertension in India. Following the establishment of
significant bivariate spatial associations between the dependent
and independent variables, an OLS model was fitted. The OLS
model indicated that the residuals were spatially auto correlated.
Subsequently, Spatial Lag and Error Models were applied to the
data. Among the two estimated spatial models, the SEM exhibited
the lowest AIC value, thus considered the appropriate model for
the study. The Spatial Error Model confirmed that environmental
groundwater factors such as arsenic, sulphate, and pH remained
statistically significant predictors of hypertension risk. The SEM
model provided the final spatial estimates of correlates of
hypertension (Table 6). The Lambda value was 0.698, which is
highly significant, indicating positive spatial autocorrelation of
regions with a high prevalence of hypertension in India. The
coefficient of arsenic was the highest (β= 2.296), followed by pH
(β= 0.927) and sulphate (β= 0.107). The coefficient estimate for
arsenic confirmed that a 10-point increase in the proportion of
groundwater arsenic was associated with a 23-point increase in
hypertension. Similarly, a 10-point increase in groundwater pH
was associated with a 9.27-point increase in hypertension risk.
Similarly, a 10-point increase in sulphate were associated with 1.07
points increase in hypertension prevalence.

Spatial variability in the association between groundwater
physicochemical properties and contaminants with
hypertension: geographically weighted regression results
The GWR model (Fig. 7) achieved an adjusted R² of 0.57, indicating
that physicochemical groundwater parameters and contaminants
explain 57% of the spatial variability in hypertension prevalence
across Indian districts, with an AICc of 1237.48, suggesting a good
model fit. The standardized residuals analysis shows that 505 out

Table 3. Moran’s I statistics show the spatial association for
hypertension and its correlates in India.

Indicators Moran’s I value p-value

Arsenic 0.03 0.002

Nitrate 0.09 0.001

Magnesium −0.03 0.024

Calcium −0.01 0.031

Fluoride 0.03 0.003

Sulphate 0.05 0.002

Chloride 0.02 0.012

Total hardness −0.01 0.046

Total dissolved solids −0.13 0.001

Electrical conductivity −0.02 0.032

Water pH 0.05 0.002
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Fig. 5 Bivariate LISA cluster maps and scatter plots showing the spatial clustering of groundwater physicochemical properties and
contaminants with hypertension in India. Bivariate LISA cluster maps and scatter plots showing the geographic clustering of: a, b arsenic, c, d
nitrate, e, f magnesium, g, h calcium, i, j fluoride, k, l sulphate, m, n chloride, o, p total hardness, q, r total dissolved solids, s, t electrical
conductivity, and u, v pH with hypertension at the district level in India. Note: In the legend, the numbers shown in parentheses indicate the
number of districts falling into each particular group.
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Table 4. Unadjusted and adjusted effects (odds-ratio, OR) estimate the association between groundwater physicochemical parameters and
groundwater contaminants, and other socio-demographic factors with hypertension in India.

Selected background characteristics Model 1 Model 2 Model 3

Observations= 7,12,666 OR [95% CI] OR [95% CI] OR [95% CI]

Arsenic

≤0.01mg/L ref ref

>0.01mg/L 1.12***[1.04,1.16] 1.09***[1.05,1.15]

Nitrate

≤45mg/L ref ref

>45mg/L 1.05**[1.01,1.09] 1.07**[1.03,1.12]

Magnesium

≤30mg/L ref ref

>30mg/L 1.06**[1.01,1.11] 1.03**[1.00,1.08]

Calcium

≤75mg/L ref ref

>75mg/L 0.89**[0.83,0.96] 0.92**[0.85,0.99]

Fluoride

≤1mg/L ref ref

>1mg/L 0.98[0.96,1.04] 1.01[0.97,1.06]

Sulphate

≤200mg/L ref ref

>200mg/L 1.33***[1.02,1.43] 1.16**[1.04,1.28]

Chloride

≤250mg/L ref ref

>250mg/L 1.08*[1.01,1.16] 1.03[0.91,1.11]

Total Hardness

≤300mg/L ref ref

>300mg/L 1.02**[1.00,1.10] 1.04[0.97,1.11]

Total Dissolved Solids

≤500mg/L ref ref

>500mg/L 0.87**[0.80,0.94] 0.94**[0.85,0.96]

Electrical Conductivity

≤300 μS/cm ref ref

>300 μS/cm 1.02*[1.00,1.10] 1.06*[1.01,1.09]

Water pH

≤6.5 ref ref

6.5 - 8.5 0.91**[0.73,0.92] 0.88**[0.74,0.97]

>8.5 2.38**[2.02,2.46] 2.12**[1.97,2.22]

Age group

15-24 years ref ref

25-34 years 2.30***[2.25,2.34] 2.29***[2.25,2.34]

35-44 years 4.91***[4.83,5.00] 4.91***[4.82,4.99]

45-54 years 8.47***[8.32,8.62] 8.47***[8.32,8.62]

55-64 years 12.84***[12.61,13.08] 12.86***[12.62,13.10]

65 and above 18.83***[18.48,19.19] 18.81***[18.46,19.17]

Sex

Male ref ref

Female 0.85***[0.85,0.86] 0.85***[0.85,0.86]

Wealth Index

Poorest ref ref

Poorer 1.09***[1.07,1.10] 1.09***[1.08,1.11]

Middle 1.24***[1.22,1.26] 1.24***[1.22,1.26]

Richer 1.40***[1.38,1.42] 1.40***[1.37,1.42]

Richest 1.56***[1.53,1.58] 1.53***[1.50,1.56]
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of 587 districts (86%) fall within the range of −1.5 to +1.5,
indicating that the model performs well in most regions, though
some districts exhibit higher deviations. The local R² values reveal
distinct spatial variations, with higher values (0.55–0.65) concen-
trated in north-western regions such as Punjab, Haryana, and

Delhi. Indicating a strong association between groundwater
parameters and hypertension. Lower values (0.15–0.25) are
observed in central India, including Madhya Pradesh and
Chhattisgarh, suggesting weaker correlations and the possible
influence of other environmental or socio-economic factors. The
intercept values further highlight spatial heterogeneity, with
higher intercepts (>0.50) in northeastern states like Assam and
Tripura and parts of West Bengal and Odisha, indicating a higher
baseline prevalence of hypertension even after accounting for
groundwater parameters. In contrast, lower intercept values
(<0.20) are observed in southern and western regions, including
Kerala, Tamil Nadu, and Gujarat, suggesting a lower baseline
prevalence.
Figure 8 illustrates the spatial distribution of GWR coefficients,

revealing distinct regional patterns for physicochemical ground-
water parameters and contaminants. For arsenic, the highest
coefficients (>0.30) are observed in the western region (Rajasthan
and parts of Gujarat), while lower coefficients (−0.20 to −0.30)
appear in southern states like Kerala and Tamil Nadu. For nitrate,

Table 4. continued

Selected background characteristics Model 1 Model 2 Model 3

Observations= 7,12,666 OR [95% CI] OR [95% CI] OR [95% CI]

Milk/Curd consumption

Never ref ref

Daily 0.86***[0.85,0.88] 0.88***[0.86,0.89]

Weekly 0.89***[0.87,0.91] 0.90***[0.88,0.92]

Occasionally 0.96***[0.94,0.98] 0.96***[0.94,0.98]

Pulses/beans consumption

Never ref ref

Daily 1.02[0.96,1.10] 1.02[0.95,1.10]

Weekly 1.00[0.94,1.08] 1.01[0.94,1.08]

Occasionally 1.01[0.94,1.08] 1.01[0.94,1.09]

Vegetarian diet

Never ref ref

Daily 0.97[0.90,1.06] 0.97[0.89,1.05]

Weekly 0.95[0.88,1.03] 0.95[0.88,1.03]

Occasionally 0.91*[0.84,0.99] 0.91*[0.84,0.99]

Non-vegetarian diet

Never ref ref

Daily 1.14***[1.08,1.21] 1.12***[1.06,1.19]

Weekly 1.13***[1.11,1.14] 1.11***[1.10,1.13]

Occasionally 1.10***[1.08,1.11] 1.08***[1.07,1.09]

Place of residence

Urban ref ref

Rural 0.96***[0.95,0.97] 0.95***[0.93,0.96]

Geographic region

North ref ref

Central 1.00[0.98,1.01] 0.95***[0.93,0.97]

East 0.81***[0.79,0.82] 0.79***[0.77,0.80]

Northeast 0.87***[0.85,0.90] 0.85***[0.82,0.87]

West 0.86***[0.84,0.87] 0.86***[0.84,0.87]

South 1.08***[1.06,1.09] 1.08***[1.06,1.10]

Model 1: Unadjusted estimates using only groundwater contaminants and physicochemical properties.
Model 2: Unadjusted estimates using only age, sex, wealth index, dietary habits, place of residence, and geographic region.
Model 3: Fully adjusted, including groundwater contaminants, physicochemical properties, age, sex, wealth index, dietary habits, place of residence, and
geographic region.
CI Confidence Interval, OR Odds-Ratio, ref Reference Category.
*p < 0.05; **p < 0.01; ***p < 0.001.

Table 5. Sensitivity, specificity, and classification performance metrics.

Metric Value (%)

Sensitivity (true positive rate) 78.2

Specificity (true negative rate) 90.5

Positive predictive values 67.8

Negative predictive values 92.3

False positive rate 9.5

False negative rate 21.8

Correctly classified 88.7
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high coefficients (0.20–0.30) are seen in central and southern
regions, while northern areas, especially the Indo-Gangetic
plains, show lower coefficients (−0.10 to −0.20). In the case of
fluoride, high coefficients (>0.20) are found in eastern parts,
including Bihar, Jharkhand, Odisha, and West Bengal, while
western and central regions also show moderately high values.
For sulphate, coefficients greater than 0.20 are seen across
northern states (Uttar Pradesh), eastern states (Bihar, Jharkhand,
Odisha, West Bengal), northeastern states (Assam, Tripura), and
western states (Rajasthan, Punjab, Haryana, Gujarat). For ground-
water total dissolved solids, most regions show negative
coefficients (<−0.20), indicating widespread negative spatial
association in most parts of India. For chloride, most Indian
regions show positive coefficients, except for southern Kerala,
parts of Tamil Nadu, and northeastern regions such as Assam and
Tripura, where negative coefficients dominate. Total hardness
shows positive coefficients in Gujarat, Maharashtra, Karnataka,
Goa, Kerala, parts of Tamil Nadu and Andhra Pradesh, and western
Uttar Pradesh. For calcium, positive coefficients are primarily

observed across the northern states (Punjab, Haryana, Uttar
Pradesh) and eastern states (Bihar, Jharkhand, and West Bengal).
Magnesium also displays positive coefficients in Gujarat, Mahar-
ashtra, Karnataka, Goa, Kerala, parts of Tamil Nadu, and Andhra
Pradesh, indicating spatial clustering in western and southern
India. For pH, positive coefficients are found across the northern
states (Punjab, Haryana, Himachal Pradesh, and Uttar Pradesh),
northwestern states (Rajasthan and Gujarat), and northeastern
states (Assam, Meghalaya, and Arunachal Pradesh). Finally,
electrical conductivity shows positive coefficients in northern
states (Punjab, Haryana, Uttar Pradesh, Bihar) and northeastern
states (Assam, Arunachal Pradesh), highlighting distinct spatial
clustering in these regions.

Hypertension risk zonation maps using machine learning
techniques
The three machine learning models were evaluated by mean
squared error (MSE), mean absolute error (MAE), and the R2 score
(Table 7). The RF (MAE= 0.0012, MSE= 0.0077, R2= 0.9970)
regressor was the best-fit model, with ANN (MAE= 0.0236,
MSE= 0.0437, R2= 0.9038) being the second best and XGBoost
(MAE= 0.0977, MSE= 0.1342, R2= 0.0930) was the least perform-
ing model. Figure 9 illustrates the hypertension risk zones across
India. The hypertension risk ranges from 0 to 1, where 0 signifies
no risk, and 1 indicates a very high risk of hypertension. Areas of
high to very high risk of hypertension are predominantly in the
north-western regions of India including Delhi, Punjab, Haryana,
and Rajasthan. The western and southern parts of India, including
Gujarat, Telangana, Andhra Pradesh, Karnataka, and Tamil Nadu,
exhibit a medium to high risk of hypertension. In eastern India
including central Bihar, southern West Bengal, and some parts of
Uttar Pradesh, there is a moderate to high risk of hypertension.
The remaining regions show low to medium hypertension risk.

DISCUSSION
Our findings indicate significant correlations between physico-
chemical groundwater parameters and hypertension, a concern
given that approximately 85% of Indians rely on groundwater as
their primary source of drinking water [10]. To our knowledge,

Fig. 6 Receiver operating characteristic (ROC) curve showing
sensitivity and specificity for hypertension classification.

Table 6. Ordinary Least Squares (OLS) spatial lag and spatial error model to assess the association between the prevalence of hypertension and
some selected background characteristics in India.

Indicators OLS model Spatial lag model Spatial Error model

Coefficient p-value Coefficient p-value Coefficient p-value

Arsenic 2.212 0.001 2.143 0.001 2.296 0.001

Nitrate −0.016 0.213 −0.001 0.182 0.001 0.117

Magnesium 0.022 0.024 0.009 0.036 0.007 0.019

Sulphate 0.105 0.001 0.102 0.003 0.107 0.001

Chloride −0.002 0.129 −0.001 0.107 −0.001 0.090

Total Hardness −0.006 0.223 −0.003 0.207 −0.003 0.203

Water pH 1.605 0.003 0.581 0.005 0.927 0.001

Non-vegetarian diet 0.012 0.136 0.013 0.102 0.070 0.006

AIC value 3171.8 2975.9 2960.2

LAMBDA 0.698 0.001

RHO 0.605

R-Square 0.31 0.52 0.56

No of districts 593 593 593

AIC Value (Akaike Information Criterion): A measure for model fit, with lower values indicating a better-fitting model.
Lambda: Represents spatial autocorrelation in the Spatial Error Model, indicating the degree of spatial dependence.
RHO (Spatial Lag Coefficient): The coefficient in the Spatial Lag Model, indicating the degree of spatial autocorrelation between neighbouring regions.
R-Square (Coefficient of Determination): The proportion of variance in the dependent variable explained by the model, with higher values indicating a better fit.

S. Biswas et al.

12

Journal of Exposure Science & Environmental Epidemiology



this is the first study to examine the association of groundwater
quality parameters and hypertension risk in India. Our study
highlights important findings with highly relevant policy
implications. Analysis of groundwater quality parameters, using
data from 29,065 monitoring groundwater wells, revealed
distinct spatial distribution patterns. Higher arsenic ground-
water levels are primarily found in the northwestern, eastern,
and northeastern regions of India, especially within the Ganga,
Indus, and Brahmaputra river basins, while nitrate and fluoride
are predominantly present in the northwestern and south-
central regions. Individuals in areas with arsenic levels above
0.01 mg/L have 1.09 times higher odds of hypertension
compared to those in areas with arsenic levels less than
0.01 mg/L. Similarly, nitrate levels above 45 mg/L are associated
with 1.07 times higher odds of hypertension. Higher magne-
sium levels (>30 mg/L) increase the odds of hypertension by
1.03 times. Sulphate levels above 200 mg/L are associated with
1.16 times higher odds of hypertension. Elevated electrical
conductivity (>300 μS/cm) increases the odds of hypertension
by 1.06 times. For water pH, individuals in areas with pH above
8.5 have 2.12 times higher odds of hypertension compared to
areas with pH ≤ 6.5.
High groundwater arsenic, nitrate and fluoride levels primarily

originate from the geological formations and intensive agriculture.
The alluvial deposits in the Indo-Gangetic Plain contain arsenic-rich
pyrite that, when oxidized under certain hydrological conditions,
releases arsenic into groundwater [41, 42]. Nitrate contamination is
intensified by hydrological dynamics, which facilitate nitrate
leaching into groundwater, particularly from agricultural regions
with high fertilizer use [43]. The Green Revolution of late 1960s
significantly transformed agriculture in northwestern India [44–47].
High-yield crop varieties, along with extensive use of chemical
fertilizers and pesticides, has significantly increased agricultural
productivity in India. This intensive agriculture and the use
nitrogen-rich and sulphate-based fertilizers have contributed to
high levels of nitrate and sulphate in groundwater, particularly in
Punjab, Haryana, and Rajasthan. Sharma et al. [44] found that
groundwater in southwestern Punjab has high electrical conductiv-
ity, total dissolved solids as well as fluoride, and nitrate levels,
making it unsafe for drinking [44]. Studies in southern Punjab and
Rajasthan also reported elevated salinity, fluoride, nitrate levels, and
other contaminants [46, 47] Ahada and Suthar [46] found that
intensive use of nitrogen-based fertilizer use increased nitrate levels
in groundwater. Geological characteristics in northwestern India,
such as alluvial plains and sandy soils, combined with erratic rainfall
patterns, have further aggravated groundwater contamination
[46–48]. Rapid urbanization and industrialization have further
exacerbated groundwater contamination in northwestern India
[49–51]. Industrial activities, including mining, manufacturing, and

processing, have also contributed to groundwater contamination
such as arsenic [48].
Our findings confirm t that elevated levels of arsenic, nitrate,

magnesium and sulphate are associated with higher likelihood
of hypertension. However, previous studies offer mixed conclu-
sions on the association between arsenic exposure and hyperten-
sion risk [52–54]. Some studies found a strong correlation; others
reported none or an inverse relationship [55]. Several studies
showed that long-term exposure to arsenic [56–58] and nitrate
[59] in drinking water can increase hypertension risk. Chronic
exposure to arsenic in drinking water has been well studied as a
risk factor for hypertension [53, 60, 61]. Arsenic disrupts vascular
function by triggering oxidative stress, which alters gene
expression, promotes inflammation, and reduces nitric oxide
production [57, 62]. Studies in Bangladesh and parts of the U.S.
show that populations exposed to arsenic-contaminated water
have higher rates of hypertension [62–64]. A meta-analysis found
that arsenic exposure showed a positive and approximately non-
linear association with the risk of hypertension [60]. However,
Chen et al. [52] in Bangladesh conducted a large population study
(n= 11,746) and adjusted for confounders (e.g., age, sex, body
mass index, tobacco smoking status), but they observed no
association between arsenic exposure and hypertension risk. Guo
et al. [52] reported a very high odds ratio (OR= 16.54) for the
association between exposure from groundwater arsenic and
hypertension [52] but the study had a small number of cases and
did not adjust for confounders. Similarly, nitrate exposure can
disrupt blood vessel function, raising hypertension risk [65].
Nitrate converts to nitric oxide, a vasodilator, but excessive
exposure can produce harmful nitrogen compounds that damage
blood cells [66]. While high nitrate intake has been associated with
hypertension, its effects from drinking water are less studied
[67, 68]. Ayub et al. [69] found significantly lower plasma nitrate
levels in hypertensive patients compared to normotensive
individuals [69]. However, other studies report the opposite trend,
with lower hypertension risk observed in communities where
drinking water contains higher nitrate levels [70]. Our study also
revealed that higher calcium levels in the water (>75mg/L) were
associated with an 8% lower risk of hypertension. Calcium, in
combination with sodium, potassium, and magnesium, helps
maintain ionic balance in vascular membranes, promotes vasodi-
lation and potentially reduces blood pressure [71–73]. These
findings contradict a previous study, which found that calcium
supplementation is a risk factor of increased blood pressure or
hypertension [74]. However, optimal calcium levels play a crucial
role in stabilizing vascular cell membranes, reducing calcium influx
into cells, and consequently lessening vasoconstriction, which can
help lower hypertension risk [75]. Daily intake recommendations
generally range from 1000 to 1200mg for adults, supporting

Fig. 7 Spatial pattern of standardized residuals, local R², and intercepts from the geographically weighted regression model.
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Fig. 8 Spatial pattern of coefficients of groundwater physicochemical properties and contaminants in association with hypertension in India –
results from geographically weighted regression.
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cardiovascular health and helping regulate blood pressure. This
balance aids in maintaining vascular stability without the risks
associated with excessive calcium levels [76]. Although calcium
supplementation may not significantly affect blood pressure, the

natural presence of calcium in drinking water could play a role in
lowering the risk of hypertension.
Moreover, our study examines how demographic and socio-

economic factors (e.g., age, rural/urban residence), as well as

Table 7. Performance evaluation of machine learning models for hypertension risk prediction.

Model Performance score

Mean Absolute Error (MAE) Mean Squared Error (MSE) R2 score

Artificial Neural Networks (ANN) 0.0236 0.0437 0.9038

Random Forest (RF) 0.0012 0.0077 0.9970

Extreme Gradient Boosting (XGBoost) 0.0977 0.1342 0.0930

Fig. 9 Machine learning-based hypertension risk zonation in India using different predictive models. Machine learning-based
hypertension risk zonation map: a artificial neural network, b random forest, and c extreme gradient boosting.
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dietary patterns affect hypertension risk. Our findings are
consistent with previous research, highlighting that age, economic
status, dietary habits, and geographical location contribute to
hypertension risk [9, 77–82]. However, when comparing our
findings to other literature, there are some discrepancies. Our
study supports those of Ghosh and Kumar (Table 4) who also
reported a significantly higher hypertension risk in older age
groups [9]. Our study corroborates this finding, demonstrating a
strikingly higher likelihood of hypertension in older age group
compared to younger age groups. Our study also found that
individuals of the higher and highest wealth groups face greater
hypertension risk. This finding is consistent with other results
demonstrating that the socioeconomic status is a major determi-
nant of hypertension risk [78] Specifically, daily consumption of
pulses, beans, and a vegetarian diet was linked to a lower risk of
hypertension, while daily consumption of non-vegetarian foods
showed an association with increased risk. Studies suggest that
higher socioeconomic groups may have more access to unhealthy
“fast food” options high in fats and meats, which could contribute
to higher hypertension risks among wealthier individuals. This
aligns with findings that greater fruit and vegetable intake is
protective against hypertension [83]. Additionally, employees with
higher nutrition knowledge were less likely to be hypertensive,
highlighting the importance of dietary factors in hypertension
prevention [81]. Moreover, our study found that rural residence
had a lower likelihood of hypertension than urban residence. This
finding aligns with the results of Dai et al. [80] who also found that
rural residents were at a lower risk for hypertension [80]. However,
Chaix et al. [79] found that the neighbourhood environment
played a significant role in hypertension, with differences in
prevalence observed across different geographical locations [79].
These studies did not consider the influence of environmental
factors such as groundwater contaminants. By incorporating both
environmental and sociodemographic factors, our study empha-
sizes the complex nature of hypertension etiology and thus the
importance of interdisciplinary approaches in public health
research.
Our study contributes to the broader discussion on the

potential health risks associated with groundwater contamination
and its link to hypertension in India. While our findings highlight
associations between groundwater contaminants and hyperten-
sion risk, further validation through prospective studies or
intervention-based research is necessary before making direct
policy recommendations. Targeted interventions could help
mitigate contamination levels, particularly in regions where
arsenic, sulphate, pH, and nitrate exceed the BIS standard cut-off
levels, such as within the Ganga, Indus, and Brahmaputra river
basins. Future research should explore the effectiveness of water
purification systems and alternative clean water sources to reduce
contamination exposure and mitigate hypertension risk. The
Random Forest model-generated hypertension risk map provides
valuable insights that could aid in delineating high-risk zones
across India, informing resource allocation for hypertension
prevention and management strategies. Environmental monitor-
ing, socioeconomic factors, and public health research should be
combined to reduce hypertension risk in India. This integrated
approach builds stronger evidence base and helps create effective
strategies that address the multiple factors influencing hyperten-
sion in Indian communities.
This study has certain limitations. One important limitation is the

potential for misclassification bias in defining hypertension. The
definition included measured hypertension (systolic ≥140mmHg or
diastolic ≥90mmHg) and self-reported use of antihypertensive
medication. However, several antihypertensive drugs are also
prescribed for conditions unrelated to hypertension, such as renal
protection in diabetes, management of heart failure, and treatment
of arrhythmias. This could have led to an overestimation of
hypertension prevalence, as some individuals classified as

hypertensive may have been taking these medications for other
indications. Additionally, the accuracy of exposure classification is a
key concern. Groundwater physicochemical and contaminant data
were merged with NFHS-5 data at the cluster level. Individual water
consumption patterns within a cluster may vary, making it
challenging to precisely assess exposure levels. Another limitation
is the exclusion of certain States and Union Territories due to
missing groundwater data, which affects the generalizability of the
findings. The absence of data from these regions may lead to an
incomplete representation of groundwater quality and its potential
health impacts across India. Future studies should consider primary
data collection and longitudinal approaches to enhance exposure
assessment and improve the robustness of the findings.

CONCLUSION
Our research sheds light on the complex relationship between
groundwater quality and hypertension risk in India. Analysing
extensive data from 29,065 monitoring wells in India, we identified
distinct spatial patterns of contaminants, notably, arsenic, high pH,
sulphate, and nitrate are concentrated in northern and north-
western regions of India, and this region was also found to have a
high hypertension risk. We emphasize the importance of targeted
interventions to mitigate contamination and reduce hypertension
prevalence, alongside addressing socio-demographic factors like
age and dietary patterns. Our findings underscore the need for
interdisciplinary approaches, integrating environmental manage-
ment, healthcare access, and lifestyle modifications to combat
hypertension effectively. Utilizing advanced spatial analysis
techniques like the Random Forest model, our study provides
valuable insights for policymakers to delineate hypertension risk
zones and allocate resources for prevention and management
interventions across India.
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