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BACKGROUND: Several studies have been conducted to understand the impact of socioeconomic and maternal factors on child
undernutrition. However, the past literature has not directly examined the joint impacts of fuel use and ambient pollution and have
primarily focused on PM2.5.
OBJECTIVE: This study explored the individual and community-level associations of both indoor (cooking fuel type) and ambient
air pollution (PM2.5, NO2 and SO2) during maternal gestation on child undernutrition.
METHODS: This study analysed stunting, being underweight, and anaemia of children aged 0–59 months (n= 259,627) using the
National Family Health Survey. In-utero exposures to ambient PM2.5, NO2, and SO2 were measured using satellite data and self-
reported fuel type was a marker of indoor pollution exposure. The study used univariate and bivariate Moran’s I, spatial lag model
and multivariable logistic regression models after adjusting for other covariates to understand the effect of pollution on in-utero
exposure and child health status at the individual and community-levels.
RESULTS: Higher concentration of indoor and ambient air pollution was found in the Northern and parts of Central regions of India.
Estimates of spatial modelling show that each 1 μg/m–3 increase in maternal exposure to ambient PM2.5 across the clusters of India
was associated with a 0.11, 9 and 19 percentage points increase in the prevalence of stunting, underweight and anaemia,
respectively. The results of multi-pollutant model show that a higher ambient PM2.5 exposure during pregnancy was linked to
higher odds of stunting (AOR:1.38; 95% CI:1.32–1.44), underweight (AOR:1.59; 95% CI:1.51–1.67) and anaemia (AOR:1.61; 95%
CI:1.52–1.69) in children. Weaker but similar associations were observed for NO2, but not with SO2. Indoor pollution exposure during
in-utero periods was also significantly associated with childhood undernutrition and this association was modified by ambient
PM2.5 levels, where exposure to both indoor and ambient air pollution had even greater odds of being undernourished.
IMPACT STATEMENT:

● Our research on multi-pollutant models has revealed the initial proof of the individual impacts of indoor and outdoor pollution
(PM2.5, NO2, and SO2) exposure during fetal development on children’s nutrition.
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INTRODUCTION
Almost half of deaths among children under the age of five are
due to undernutrition [1], making this a crucial global public
health issue. Undernutrition at an early age affects brain
development [2] and immune function [3] resulting in lower
educational attainment, later cognitive impairment [4] and
increased risks of infection and chronic diseases. Altogether,
impacts of undernutrition can lead to higher morbidity and
mortality [5], result in substantial losses in disability-adjusted life
years, inhibit productive work [6], and reduction in economic
productivity [7]. As such, the 2nd Sustainable Development Goal
(SDG) envisages ending hunger and all forms of undernutrition by
2030. Importantly, however, a recent evaluation of patterns in
childhood undernutrition documented only minor improvements

(5–10%) between 2000 and 2015 globally, suggesting that the
decreases observed are likely to be insufficient to meet the 2030
SDG goals [8].
Existing studies have identified many of the determinants of

childhood undernutrition, including demographic characteris-
tics, morbidity, economic status, sanitation practices and
maternal nutrition [9, 10]. Place of residence is also an important
predictor of undernutrition. Children living in Asia and Africa
have the highest risk of various types of undernutrition [11], and
in some of these areas, like India, the prevalence of under-
nutrition has worsened over time [12]. Recent observations show
that the highest incidence of stunting (smaller than height-for-
age) and wasting (smaller than weight-for-age) was between
birth to 3 months. Collectively, this suggests that there is a need
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to identify modifiable environmental factors that may increase
risk [13, 14], with a special emphasis on maternal or in-utero
exposures [15].
A growing body of evidence indicates that in-utero exposure to

PM2.5 and NOx is linked to various adverse health consequences,
including pregnancy loss, preterm delivery, intrauterine growth
restriction, and low birth weight (LBW) [14, 16]. Evidence exists
that exposure to ambient air pollution is associated with adverse
child health, anaemia, and stunted growth [17]. In addition,
exposure to polluted air has been associated with acute
respiratory infections (ARI), with adverse effects on childhood
nutritional status [18]. The use of unclean fuel further results in
poor health in women and children due to smoky indoor
concentrations with PM2.5 and other pollutants [19].
Concurrent high ambient and indoor air pollution levels in

India [20] and a large fraction of deaths among children under
the age of 5 years due to nutritional causes suggest that
reducing maternal exposure to air pollution may be a way to
reduce the burden of childhood undernutrition in this large
country [21]. Although existing national-level analyses in India
have shown adverse associations between high maternal and/or
childhood exposures to air pollution and childhood under-
nutrition [22, 23], there remain important gaps in the literature.
First, the effects of outdoor and indoor air pollution need to be
considered together as the fuel type may influence the
importance and contribution of each source. Second, much of
the literature has focused on PM2.5, which is a regional pollutant
that arises from multiple sources. Examining additional pollu-
tants may provide insighst into the sources of pollution that are
most impactful for health. For example, NO2 is a more localised
pollutant that often tracks with traffic sources and SO2 is
primarily generated from coal-burning activities. Investigation of
the relationships of these pollutants with children’s health may
inform strategies for pollution control in India. Finally, as
previous studies have shown, there are important spatial
patterning of these associations that deserve further investiga-
tions as area-level factors may modify or confound the pollution
and undernutrition association. Therefore, in this study, we
examine the role of maternal exposure to both indoor and
multiple ambient air pollutants (PM2.5, NO2 and SO2) during
pregnancy on childhood undernutrition (i.e. stunting, wasting,
and anaemia) at the individual and district levels to help inform
strategies to reduce childhood undernutrition.

DATA AND METHODS
Study population and health data
The study population comes from the fourth round of the National
Family Health Survey (NFHS-4) of India, conducted from January
2015 to December 2016 [12]. The sample was recruited across
36 states and union territories and 640 districts using a stratified
two-stage sampling design based on the 2011 Indian Population
and Housing Census. Primary Sampling Units (PSUs) were villages
in rural areas and census enumeration blocks (CEBs) in urban
areas. Survey questionnaires were prepared to collect information
on maternal and child health along with socioeconomic informa-
tion. In addition to interview data, the NFHS collected biomarker
data. Anthropometry was measured for children aged
0–59 months and blood samples were taken from children aged
6–59 months. The protocol for the NFHS-4 survey, including the
content of all the survey questionnaires, was approved by the IIPS
Institutional Review Board and the ICF Institutional Review Board.
The protocol was also reviewed by the U.S. Centres for Disease
Control and Prevention (CDC). Further details on the sampling
design can be obtained in the Indian National Report available at
https://dhsprogram.com/pubs/pdf/FR339/FR339.pdf. In the survey,
anthropometric measurement was taken from 219,796 children
and 205,035 for blood sample.

Air pollution data
Ambient air pollution. To estimate the ambient PM2.5 and SO2

concentrations, we used data from the Modern-Era Retrospective
analysis for Research and Applications version 2 (MERRA-2) [24].
MERRA-2 integrates ground-level and satellite observations using
NASA Global Modelling and Assimilation Office’s (GMAO) Goddard
Earth Observing System Model version 5 (GEOS 5) and the
Goddard Chemistry, Aerosol, Radiation and Transport (GOCART)
aerosol module. These data are available from 1980 to 2022. More
details are available at https://disc.gsfc.nasa.gov/datasets/
M2TMNXAER_5.12.4/summary.
Ozone Monitoring Instrument (OMI) satellite images were used

to assess the mother’s exposure to nitrogen dioxide (NO2) during
pregnancy. OMI satellite imagery was launched in 2004 as a part
of the NASA EOS (Earth Observation System), which performs
measurements of solar radiation reflected by the atmosphere and
the Earth’s surface with spectral resolutions of 270–500 nm and
0.5 nm. OMI provides the total NO2 content in the vertical column
of the atmosphere. The concentration was calculated by dividing
the NO2 content by the air mass value of NO2, which depends on a
number of parameters such as the geometry of the observation,
the albedo of the surface, the shape of the vertical profile of NO2,
and the properties of the cloud (e.g. height, density, and sky
coverage). To ensure the data quality, we excluded data when the
cloud radiance fraction exceeded 0.3 (i.e. close to clear sky). For
more details, visit https://giovanni.gsfc.nasa.gov/giovanni/.
We assigned average in-utero air pollution exposures to each

survey participant based on the date of birth and duration of
pregnancy of the children from the NFHS. For example, if a child
was born in January 2015 with a pregnancy duration of 9 months,
May 2014 to the end of January 2015 was considered as the in-
utero period. To protect participants’ privacy, the cluster points
were displaced randomly by 2 and 5 km in urban and rural areas,
respectively. Thus, a 3 km buffer was created to extract the
pollutants of each respective cluster point. Our analysis utilized
the 25th and 75th percentiles of ambient air pollutant concentra-
tions as thresholds to define low and high exposure groups,
respectively.

Indoor air pollution. Indoor air pollution was estimated using the
household information available in NFHS. In the survey, respon-
dents were asked about using primary cooking fuel. We classified
wood, coal, dung cake, and crop residue as solid or unclean fuel
and natural gas, liquefied petroleum gas, and electricity as clean
fuels. Cooking in the household using solid cooking fuel was
considered as exposure to indoor air pollution.

Variable description
Dependent variables. The survey has collected the height and
weight of children aged up to 5 years during the survey through
anthropometric measurement. We used two anthropometric
indices, stunting (height-for-age) and underweight (weight-for-
age), for physical growth assessment. These indices were derived
from the standard deviation units (Z-score) and the median of the
reference population based on the standards of WHO [25]. If the
Z-score for height-for-age and weight-for-age is more than
2 standard deviations lower than the median, then the child is
considered stunted and underweight, respectively. In addition,
the survey provides the altitude adjusted haemoglobin levels.
With these data, we defined anaemia as haemoglobin levels
<11 g/DL [26].

Covariates. Key socioeconomic and demographic factors were
selected to adjust associations of pollution with our outcome
variables based on our expectations of potential confounders of
the relationships between air pollution and children’s health. The
mother’s age at delivery was calculated using information such as
age of the child, mother’s current age, and date of birth of the
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child. The mother’s highest level of education was recoded as
‘Iilliterate/primary’, ‘secondary’ and ‘higher’. The wealth quintile of
the household was categorized into three categories; ‘poor’,
‘middle’ and ‘rich’. The religion of the household was recoded as
‘Hindu’, ‘Muslim’ and ‘Others’ (Sikh, Christian, Jain etc.). The toilet
facility was recoded into ‘no’ – do not have toilet facility or used to
go in field or bush for the toilet and ‘yes’. Place of residence of the
respondents was reported in two categories; ‘urban’ and ‘rural’.
Further, all the regions of India- ‘North’, ‘Central’, ‘South’, ‘East’,
‘West’ and ‘North-East’ were considered for the analysis (Supple-
mentary Table A.2).

Statistical analysis
We first conducted univariate Moran’s I statistics to identify the
community (clusters) with higher (i.e. hot spots) and lower (i.e.
cold spots) prevalence than expected of our three measures of
undernutrition using a Local Indicators of Spatial Association
(LISA) map. We then ran bivariate Moran’s I analyse to estimate the
spatial correlation between the prevalence of undernutrition and
air pollution. Next, we used a spatial lag model to understand
associations between air pollutants and area-level child malnutri-
tion while accounting for spatial correlation as defined by the
following equation:

Yi ¼ δ
X

j

wijYj þ βχ i þ εi (1)

where Yi denotes the prevalence of childhood undernutrition for
the i-th cluster, δ is the spatial autoregressive coefficient, wij

denotes the spatial weight of proximity between clusters i and j, Yj
is the prevalence of childhood undernutrition in the j-th cluster, β
denotes the coefficients for all Xi, which reflects the set of
predictor variables, and εi is the residual error. Finally, we
performed a multivariable logistic regression model to study the
relationship between air pollution and child undernutrition after
adjusting other covariates.
As corroborated by previous studies, a moderate correlation

between PM2.5 and NO2 of 0.64 (p < 0.05), and NO2 and SO2 of 0.41
(p < 0.05) was observed in the study, (Supplementary Table A.1).
Based on these observations, we conducted both single and multi-
pollutant models for our study. The adjustment set for our models
included: sex of the child, mother’s age at birth, mother’s
education, mother’s height, religion, wealth status, toilet facility,
urbanicity, and region. Generalised estimating equations were
used to account for community-level clustering. The interaction
terms between indoor and ambient air pollutants were used to
assess the combined effects of indoor and ambient pollution on
childhood undernutrition after adjusting for other demographic
and socioeconomic determinants. Community-level spatial ana-
lyses were performed on ArcGIS and GeoDa, while individual-level
GEE models were performed in STATA Software (‘xtgee’).

RESULTS
Prevalence of undernutrition
In our sample of 236,116 children, the overall prevalence of
stunting, underweight and anaemia was 35%, 33% and 69%
respectively, in a sample of 209,210 mothers (Table 1). The highest
prevalence of stunting was observed in the Northern states, such
as Uttar Pradesh (45%) and Bihar (47%), and in Western India,
including states like Maharashtra (Fig. 1). The prevalence of
underweight children was also high in ten states having more
than 1 out of 3 children being underweight. For anaemia, the
highest prevalence was in Haryana (72%), followed by Jharkhand,
Madhya Pradesh, Bihar and Uttar Pradesh. Fewer children with
undernutrition were observed in southern and North-East India.
The study utilized hot spot analyses to identify statistically
significant clusters of undernutrition. The resulting map displayed
dark red clusters representing the 99% significant cluster points

(hot spots) for the outcome variable. A high concentration of
statistically significant hot spots of stunting was observed in most
parts of Bihar, as well as some parts of Uttar Pradesh and
Jharkhand. Conversely, hot spots for underweight were more than
expected in states such as Jharkhand, Bihar, and Chhattisgarh,
with a sparse distribution observed in the Central region of India
and Odisha. The hot spots for child anaemia were densely
concentrated in Delhi and its surrounding regions, as well as
Madhya Pradesh, Bihar, Uttar Pradesh, and Jharkhand. In addition,
statistically significant cold spots of undernutrition (represented
by dark blue points) were predominantly found in the North-
Eastern and Southern regions of India.
Table 2 presents the association of different socio-demographic,

economic and household determinants with undernutrition.
Although the study did not observe significant differences in the
prevalence of undernutrition by sex of the child, children
with stunting and who were underweight were more frequently
males, while anaemia was higher among females. Adolescent
(below 20 years of age) mothers had a higher proportion of
stunted (40%) and underweight (37%) children, whereas mothers
aged 30 years and above had a higher proportion of children who
were anaemic (59%). Similarly, there were more stunted and
underweight children among mothers with lesser height,
those belonging to the Muslim community, having no toilet
facilities, and living rural areas. In contrast, mothers who belonged
to wealthy households and were more educated had fewer
malnourished children.

Air pollution concentrations
Table 1 shows that about half (49%) of the households in India
were exposed to indoor air pollution from solid fuel use, with the
highest proportion of 77% in Chhattisgarh, the northern part of
India. Similar to the prevalence of undernutrition, a high
proportion (>70%) of indoor air pollution exposure was also
observed in Jharkhand, Bihar and Madhya Pradesh, the central
region of India. Figure 2 depicts the spatial concentration of the
pollutants across India. The distribution map of ambient PM2.5

shows a high concentration over the upper Gangetic region,
covering states like Uttar Pradesh, Bihar, Delhi, Punjab and
Haryana, whereas SO2 concentrations were highest in some parts
of the Eastern and Central region (Jharkhand and Chhattisgarh).
The spatial pattern of NO2 shows higher concentrations in the
Northern (Punjab, Haryana, Delhi) and Eastern regions (West
Bengal, Jharkhand and some parts of Odisha).

Cluster-level associations between air pollution and child
undernutrition
Figures 3–5 illustrate the bivariate spatial correlations between
ambient PM2.5, NO2, SO2, and indoor air pollution with childhood
undernutrition among the 27, 872 clusters. For all three outcomes
of child undernutrition, there were consistent positive trends with
ambient PM2.5, NO2, and indoor air pollution, whereas relation-
ships with SO2 were less clear. Strong spatial relationships were
observed between childhood undernutrition and ambient PM2.5

and NO2 most notably in the northern, and central regions of
India, including most of the Empowered Action Group (EAG) states
such as Uttar Pradesh, Bihar, and some parts of Jharkhand. The
bivariate LISA map indicates a strong spatial autocorrelation
between PM2.5 and undernutrition; stunting; β= 0.12, p ≤ 0.00,
underweight; β= 0.13, p ≤ 0.00 and anaemia; β= 0.20, p ≤ 0.00.
There was also evidence of clustering of these two pollutants with
undernutrition in Delhi. For indoor air pollution as well, there was
a notable positive spatial correlation with the outcomes (stunting;
β= 0.17, p ≤ 0.00, underweight; β= 0.18, p ≤ 0.00 and anaemia;
β= 0.09, p ≤ 0.00), but the hotspots were more dispersed
throughout Central India than for ambient PM2.5 and NO2. SO2

had a much weaker spatial correlation with the outcomes but
showed evidence of clustering in Eastern India.
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The results of the spatial lag model (Table 3) show that each
1 μg/m3 increase in maternal exposure to ambient PM2.5 across
the clusters of India was associated with a 0.11 percentage point
increase in the prevalence of stunting (p ≤ 0.00). In addition, a one
-point increase in the exposure to NO2 was statistically associated

with a 0.02-point increase in stunting prevalence (p ≤ 0.02).
Mothers exposed to higher levels of ambient PM2.5 during
pregnancy had significantly higher likelihood of having under-
weight (β= 0.0009, SE= 0.00006), while each μg/m3 increase in
PM2.5 increases the prevalence of anaemia by 0.19%. Other

Table 1. The proportion of households exposed to indoor air pollution and prevalence of stunting, underweight and child anaemia across Indian
states and Union Territories.

State Indoor air pollution (%) Stunting (%) Underweight (%) Anaemia (%)

North

Chandigarh 12.69 29.76 25.60 72.18

Delhi 4.29 32.53 27.90 59.86

Haryana 50.00 34.62 29.89 71.84

Himachal Pradesh 52.99 27.12 22.33 53.70

Jammu And Kashmir 41.44 28.06 17.08 54.16

Punjab 35.77 26.50 22.00 56.69

Uttarakhand 44.49 34.30 27.36 60.21

Rajasthan 50.17 39.72 37.11 60.44

Central

Chhattisgarh 77.22 38.16 38.70 41.74

Madhya Pradesh 70.25 42.51 43.60 69.02

Uttar Pradesh 62.50 46.87 40.32 63.35

East

Bihar 71.48 48.99 44.56 63.54

Jharkhand 76.40 46.13 48.54 70.10

Odisha 53.66 34.57 34.93 44.61

West Bengal 36.80 33.13 32.45 54.47

North-East

Arunachal Pradesh 54.78 29.85 19.94 54.38

Assam 42.95 36.75 30.44 35.88

Manipur 44.84 29.18 14.04 23.96

Meghalaya 62.72 44.42 29.65 48.14

Mizoram 39.96 28.47 12.19 19.63

Nagaland 50.85 29.29 17.33 26.59

Tripura 48.01 24.33 24.55 48.23

Sikkim 19.58 30.17 14.34 55.54

West

Maharashtra 41.71 34.68 36.66 53.97

Dadra And Nagar Haveli 48.44 41.84 39.86 84.35

Daman And Diu 12.53 23.12 27.47 74.46

Goa 20.04 20.32 24.03 48.35

Gujarat 35.89 38.97 40.20 62.40

South

Lakshadweep 31.69 27.22 24.20 52.61

Karnataka 48.64 36.82 35.79 61.25

Kerala 45.20 20.41 16.53 35.95

Tamil Nadu 16.15 27.74 24.47 50.77

Andaman And Nicobar Island 27.61 23.31 21.32 50.27

Andhra Pradesh 24.11 32.23 32.80 58.50

Puducherry 12.08 23.94 22.74 44.90

Telangana 19.71 28.06 28.40 60.63

Total 49.01 38.94 36.43 58.65

Using solid cooking fuel was considered as exposure to indoor air pollution. Stunting (height-for-age) and underweight (weight-for-age) were derived from
the standard deviation units (Z-score) and the median of the reference population based on the standards of WHO. Less than 11 g/DL of haemoglobin levels
defined as anaemia.
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socioeconomic parameters such as open defecation, poverty and
proportion of educated mothers, teenage mothers and sex of the
child were also associated with stunting and underweight
(Supplementary Tables A3–A5). The coefficient estimate confirmed
that a 1-point increase in maternal exposure to SO2 (β= 0.00014,
SE= 0.00002) and NO2 (β= 0.00031, SE= 0.00003) was associated
with an increase of 0.03 points and 0.06 points, respectively in
underweight prevalence. A negative spatial relationship of SO2

was found with stunting, which was not statistically significant.

Individual-level associations between air pollution and child
undernutrition
In our minimally adjusted models with single pollutants and fully
adjusted multivariable logistic regression models with multi-
pollutants, we observed consistent associations between air
pollution during pregnancy and childhood undernutrition (Table 4).
In our multi-pollutant models, we observed that a higher ambient
(75th percentile) PM2.5 concentration during pregnancy was
associated with higher odds of having stunted (AOR:1.32; 95%
CI:1.25–1.38), underweight (AOR: 1.271.59; 95% CI: 1.20–1.33) and
anaemic (AOR:1.19; 95% CI: 1.12–1.26) children. Mothers exposed to
high concentration of NO2 also had higher odds of having stunted
(AOR:1.06; 95% CI:1.01–1.09), underweight (AOR:1.06; 95%
CI:1.02–1.10) and anaemic (AOR: 1.14; 95% CI: 1.10–1.18) children
as compared to their counterparts who were not exposed. Mothers
exposed to indoor air pollution also had greater odds of having
stunted (AOR: 1.05; 95% CI: 1.02–1.07), underweight (AOR:1.13; 95%
CI:1.10–1.15) and anaemia (AOR:1.07; 95% CI:1.04–10) children as
compared to those who were not exposed. Children who were
highly exposed to SO2 while in the uterus also had a greater chance
of experiencing underweight (AOR: 1.12; 95% CI: 1.09–1.15)
compared to those with low exposure to the pollutant. In the

multi-pollutant model, we found evidence of confounding between
PM2.5 and NO2 for associations with underweight and anaemia but
not stunting. After adjustment, associations with PM2.5 strengthened
in magnitude whereas associations with NO2 became weaker.
Indoor air pollution was largely robust to adjustment for outdoor
pollutants. Socioeconomic and demographic variables such as sex of
the child, mother’s age at birth, mother’s education, mother’s height,
religion, wealth status, toilet facility, place of residence, and region
were adjusted for in the models (Supplementary Tables A6–A10).
In the interaction models, we found that ambient PM2.5 had a

stronger impact on stunting (AOR:1.54; 95% CI:1.47–1.62), under-
weight (AOR:1.83; 95% CI:1.73–1.93) and anaemia (AOR:1.73; 95%
CI:1.63–1.83) among those women who had indoor air pollution
exposures as compared to those who had no indoor air pollution
exposures (AOR:1.44; 95% CI:1.37–1.52), (AOR:1.78; 95%
CI:1.69–1.88) and (AOR:1.67; 95% CI:1.57–1.77), respectively.
Mothers exposed to both higher concentration of SO2 and indoor
air pollution had a higher probability of having stunted (AOR:1.26;
95% CI:1.20–1.31) and underweight (AOR:1.25; 95% CI:1.19–1.29)
children as compared to who were not exposed to indoor air
pollution and had low concentration of SO2. In comparison to the
previous situation, a decrease in odds ratio was observed among
children whose mothers had high exposure to SO2 but not indoor
air pollution; stunting (AOR:1.15; 95% CI:1.09–1.20) and under-
weight (AOR:1.05; 95% CI:1.01–1.10). Women who were exposed
to high levels of NO2 but not exposed to indoor air pollution had
higher odds of having underweight children and children having
anaemia (AOR: 1.33; 95% CI: 1.27–1.40) and (AOR: 1.30; 95% CI:
1.24–1.37), respectively. The impact of NO2 exposure increased
when there was also exposure to indoor air pollution, resulting in
higher odds of underweight (AOR: 1.46; 95% CI: 1.39–1.53) and
anaemia (AOR: 1.33; 95% CI: 1.26–1.39).

Fig. 1 Prevalence and clustering map of child undernutrition indicators across India. A Prevalence and clustering of stunting. B Prevalence
and clustering of underweight. C Prevalence and clustering of anaemia. Source: Map prepared by authors using ArcGIS 10.8, https://
arcgis.software.informer.com/.
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DISCUSSION
These study findings reveal a clear association between exposure to
indoor and outdoor air pollution during in-utero periods and poor
child health outcomes, indicating the need to address the
betterment of both household and ambient pollution for child
health. Further, it identifies the spatial patterns of these relations to

help program interventions. Owing to the fact that this analysis was
performed on a large-scale, nationally-representative dataset and
adjusted for possible confounders, the findings of the study can be
considered as robust and our area-level analyses will be informative
in policymaking. The individual-level analysis further finds that an
increase in ambient PM2.5 and exposure to indoor pollution are

Table 2. Percentage distribution of stunting, underweight and childhood anaemia by background characteristics, Na=2,19,796; Nb=2,05,035
children.

Background characteristics Na Nb Stunting Underweight Anaemia

Sex of the child

Male 1,23,209 1,09,243 37.33 34.85 58.49

Female 1,12,907 99,967 36.76 34.47 58.84

Mother’s age at birth

Below 20 31,403 28,278 39.76 37.08 57.48

20–24 1,07,084 95,065 36.76 34.69 59.17

25–29 65,520 57,404 35.42 32.91 58.44

30 & above 32,110 28,464 38.77 35.81 58.54

Mother’s height (cm.)

<145 27,792 24,630 54.76 49.78 61.73

15–149 63,889 56,502 43.63 41.27 59.69

150 & above 1,44,425 1,28,079 30.06 28.84 57.66

Mother’s education

Illiterate/primary 1,03,286 93,135 46.65 43.16 63.65

Secondary 1,08,004 94,898 31.80 30.30 55.77

Higher 24,825 21,176 20.05 18.34 49.63

Type of cooking fuel

Clean 74,192 66,233 27.44 25.47 54.48

Unclean 1,61,924 1,42,977 41.47 38.88 60.59

Cooking place

Separate kitchen 1,89,963 1,68,492 36.63 34.28 58.37

Without separate kitchen 46,153 40,718 38.83 36.25 58.73

Religion of the head of the household

Hindu 1,85,616 1,64,680 37.20 35.22 58.85

Muslim 39,029 34,444 38.41 33.88 59.27

Others 11,470 10,086 30.26 28.39 53.46

Wealth status

Poor 1,11,467 99,125 46.00 43.33 62.17

Middle 46,779 41,476 35.38 32.54 59.05

Rich 77,871 68,519 25.27 23.54 53.34

Has toilet facility

No 1,04,150 93,487 45.44 42.83 62.63

Yes 1,31,966 1,15,723 30.45 28.22 55.29

Place of residence

Urban 65,782 58,270 29.95 28.36 56.15

Rural 1,70,334 1,50,940 39.80 37.10 59.63

Region

South 41,805 36,616 28.12 26.67 26.67

North 31,273 27,687 33.28 29.20 29

Central 64,094 56,887 43.22 38.81 62.72

North-East 8,305 7,145 33.91 26.53 36.63

East 60,938 54,376 40.75 35.26 59.21

West 29,701 26,497 33.62 26.67 56.18

Na; sample for stunting and underweight and Nb; Sample for anaemia.
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independently associated with a greater likelihood of stunting,
underweight and anaemia, consistent with previous studies [23, 27].
We newly find an increase in the odds of having undernourished
children among mothers who were exposed to NO2 whereas
associations with SO2 was less clear. Our results add to the growing
body of evidence suggesting that meeting targets for the National

Clean Air Program (NCAP) would improve child health and that air
pollution control should be a top priority in India.

Spatial variations in the level of pollutants in India
Concentrations of ambient PM2.5 are higher in the Upper-Gangetic
plains [28]. The deteriorating air quality has become an emerging

Fig. 4 Spatial relationships between underweight, ambient and indoor air pollution. A Relationship between underweight and PM2.5.
B Relationship between underweight and SO2. C Relationship between underweight and NO2. D Relationship between underweight and
indoor air pollution. Map prepared by authors using GeoDa 1.8, https://geoda.software.informer.com/.

Fig. 2 Spatial distribution of ambient air pollution across India. A Spatial distribution of PM2.5. B Spatial distribution of SO2. C Spatial
distribution of NO2. Source: Map prepared by authors using GeoDa 1.8, https://geoda.software.informer.com/.

Fig. 3 Spatial relationships between stunting, ambient and indoor air pollution. A Relationship between stunting and PM2.5. B Relationship
between stunting and SO2. C Relationship between stunting and NO2. D Relationship between stunting and indoor air pollution. Map
prepared by authors using GeoDa 1.8, https://geoda.software.informer.com/.
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public health as well as an environmental concern in India, especially
in the northern part. Recently, Health Effects Institute (HEI) reported
that exposure to PM2.5 reduces 1.5 years of life expectancy among
Indians [29]. A previous study conducted using the chemical
transport model has explored that about 60–70% of PM2.5 is emitted
from industrial and residential activities in India. In addition, energy
and agricultural sources also play a significant role [30]. Moreover,
another study estimated that India produced 990.68 Gg/yr in 2018
PM2.5 due to the crop residue burning, while the Indo-Gangetic
region was the hotspot [31]. Further, half of Indian households use
solid or polluted fuels for cooking, heating and other domestic
purposes, thus, becoming the largest contribution to ambient PM2.5.
The study estimated that most of the districts in the Indo-Gangetic
region contributed more than 40% of ambient PM2.5 exposure that
can be attributed to household PM2.5 [32]. Findings from another set
of studies [28, 33] show that it is possible to achieve a significant
reduction in PM2.5 levels by implementing stringent measures to
curtail PM2.5 emissions.
Our findings for SO2 and NO2 suggest that concentrations are

highest in Jharkhand, Chhattisgarh, Punjab, Haryana, and Delhi.
This could be a result of large coal-fired power plants, biomass
burning, vehicular and industrial pollution [32, 34, 35]. A heavy
traffic network can be observed in Delhi, which is a major source
of NO2. On the other hand, areas such as Bokaro in Jharkhand,
Durgapur in West Bengal, Bhilai in Chhattisgarh and Rourkela in
Odisha are known as the locations of the Asia’s significant iron and
steel industries and a high level of NO2. Moreover, the mining
process and associated industries, thermal plants, fossil fuel
extraction etc. play a major role in contributing to the high
concentrations of NO2 and SO2, which could be a reason for
having higher NO2 and SO2 concentrations in the East-Central and
some parts of the Northern regions of India [36]. Thermal plants
are the highest contributors to NO2 emissions in India [37], which

can be found in the present study by looking at the spatial
distribution.

Exposure to ambient PM2.5 during pregnancy and its effect on
child nutrition
Our findings suggest that pregnant mothers who were exposed to
ambient PM2.5 during pregnancy had higher odds of giving birth
to anaemic children. The probable association between air
pollution and childhood undernutrition has been gaining atten-
tion recently. There are several potential mechanisms by which
maternal exposure to air pollution can lead to childhood stunting,
wasting, and anaemia. It is well-established that exposure to air
pollution can induce inflammation and when activated in
pregnant women, the resulting epigenetic changes could directly
affect fetal growth [38]. These mechanisms appear to explain the
observed associations between maternal exposure to air pollution
and adverse birth outcomes [39]. Studies show that increased
prenatal exposure to ambient air pollution (PM2.5) is associated
with the increased risk of premature births and low birth weight at
term [16, 17, 19]. Low birth weight at term is a surrogate for
intrauterine growth constraint that is also independently linked to
stunting and underweight [40]. Moreover, exposure to ambient air
pollution could lead to respiratory infections such as pneumonia
that suppress the appetite and reduce nutrient absorption [41].
Haemoglobin is a protein that is found in the bold red cells (RBCs)
and transports oxygen [42]. The negative relationship between
ambient PM exposure and haemoglobin concentration and RBC
count could be attributed to growing evidence that adsorbed
minerals in PM particles can destroy the RBCs and impede the
release of haemoglobin [43–45]. Another possible pathway is
decreased renal erythropoietin secretion and increased endogenic
erythropoietin resistance in the marrow, thus, reducing RBC
production and affecting the release of haemoglobin [46].

Table 3. Estimated result from independent Spatial Lag Model (SLM) showing the spatial association between exposure to air pollution and child
nutrition.

Covariates Stunting Underweight Anaemia

beta SE P beta SE P beta SE P

PM2.5 (μg /m3) 0.00109 0.00007 <0.001 0.00093 0.00006 <0.001 0.00191 0.00008 <0.001

SO2 (μg /m3) −0.00003 0.00002 0.090 0.00014 0.00002 <0.001 0.00006 0.00003 0.007

NO2 molecules/m2) 0.00023 0.00003 <0.001 0.00031 0.00003 <0.001 0.00062 0.00004 <0.001

R2 0.20 0.24 0.21

Exposed to indoor air pollution, proportion of male child, uneducated mother, teenaged mother, short stature mother, poor, open defecation, rural population
and proportion of Hindu population adjusted in the model. Analysis conducted using 27,872 clusters available in the dataset.

Fig. 5 Spatial relationships between childhood anaemia and ambient and indoor air pollution. A Relationship between childhood
anaemia and PM2.5. B Relationship between childhood anaemia and SO2. C Relationship between childhood anaemia and NO2. D Relationship
between childhood anaemia and indoor air pollution. Map prepared by authors using GeoDa 1.8, https://geoda.software.informer.com/.
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Table 4. Independent logistic regression model estimates showing the effects of indoor and outdoor air pollution on childhood stunting,
underweight and anaemia.

Independent variables Stunting Underweight Anaemia

AOR# 95% CI AOR# 95% CI AOR# 95% CI

Upper Lower Upper Lower Upper Lower

Single pollutant results

Outdoor air pollution

PM2.5 (μg/m3)

Low Ref. Ref. Ref.

Medium 1.12*** 1.07 1.17 1.23*** 1.17 1.28 1.16*** 1.10 1.22

High 1.32*** 1.25 1.38 1.27*** 1.20 1.33 1.19*** 1.12 1.26

SO2 (μg/m3)

Low Ref. Ref. Ref.

Medium 0.99 0.96 1.02 1.08*** 1.05 1.11 1.04** 1.01 1.07

High 0.94*** 0.92 0.98 1.12*** 1.09 1.15 1.00 0.96 1.04

NO2 (molecules/m2)

Low Ref. Ref. Ref.

Medium 1.11*** 1.08 1.15 1.23*** 1.19 1.26 1.13*** 1.09 1.16

High 1.14*** 1.10 1.18 1.27*** 1.23 1.31 1.27*** 1.22 1.32

Exposed to indoor air pollution

No Ref. Ref. Ref.

Yes 1.05*** 1.02 1.07 1.09*** 1.07 1.11 1.07*** 1.04 1.09

Multi-pollutant results

Outdoor air pollution

PM2.5 (μg m3)

Low Ref. Ref. Ref.

Medium 1.17*** 1.13 1.21 1.52*** 1.46 1.58 1.50*** 1.43 1.56

High 1.38*** 1.32 1.44 1.59*** 1.51 1.67 1.61*** 1.52 1.69

SO2 (μg m3)

Low Ref. Ref. Ref.

Medium 0.98 0.96 1.01 1.07*** 1.04 1.10 1.02 0.99 1.06

High 0.92*** 0.89 0.95 1.07*** 1.03 1.10 0.93*** 0.89 0.97

NO2 (molecules/m2)

Low Ref. Ref. Ref.

Medium 1.07*** 1.04 1.10 1.08*** 1.05 1.12 1.00 0.96 1.04

High 1.06*** 1.01 1.09 1.06*** 1.02 1.10 1.09*** 1.05 1.14

Expose to indoor air pollution

No Ref. Ref. Ref.

Yes 1.10*** 1.07 1.11 1.13*** 1.10 1.15 1.07*** 1.04 1.10

Interaction results

Indoor × PM2.5

No × low Ref. Ref. Ref.

No × high 1.44*** 1.37 1.52 1.78*** 1.69 1.88 1.67*** 1.57 1.77

Yes × high 1.54*** 1.47 1.62 1.83*** 1.73 1.93 1.73*** 1.63 1.83

Indoor × SO2

No × low Ref. Ref. Ref.

No × high 1.15*** 1.09 1.20 1.05** 1.01 1.10 0.99 0.94 1.04

Yes × high 1.26*** 1.20 1.31 1.25*** 1.19 1.29 1.04* 0.99 1.09

Indoor × NO2

No × low Ref. Ref. Ref.

No × high 0.96* 0.92 1.01 1.33*** 1.27 1.40 1.30*** 1.24 1.37

Yes × high 1.04* 1.00 1.08 1.46*** 1.39 1.53 1.33*** 1.26 1.39

Note: reference category; Ref. and significant level; *p < 0.10. **p < 0.05. ***p < 0.01.
AOR Adjusted Odds Ratio and CI Confidence Interval.
#Socioeconomic and demographic variables such as sex of the child, mother’s age at birth, mother’s education, mother’s height, religion, wealth status, toilet
facility, place of residence and region adjusted in the interaction model.
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NO2 and SO2 exposure and its effect on child nutrition
Past evidence suggests that NO2 exposures can create a chronic
systemic inflammatory response, leading to increased endogen-
ous erythropoietin resistance in the bone marrow, further causing
a decrease in RBC production and haemoglobin levels [47, 48].
Inhaling NO2 during pregnancy affects the fetus’s growth by
disrupting fetal antioxidant oxidant balance or leading to
oxidative injury [49]. Moreover, it restricts the transportation of
blood and glucose in the blood cells, affecting fetal growth [50].
Despite a dearth of literature on detailed biological mechanisms,
there is evidence to suggest that in-utero exposure to oxides of
nitrogen could lead to modulations in DNA methylation, thus,
impeding fetal growth, an independent factor of stunting and
underweight [51, 52]. In addition, oxidative stress and inflamma-
tory responses triggered by prenatal exposure to oxides of
nitrogen may lead to impaired neural and functional develop-
ment, ultimately having an impact on child nutrition outcomes in
later life [53]. Our findings do not depict a consistent and distinct
association between SO2 pollution and stunting prevalence
among children, the finding of another Indian study [54]. This
may be partly because we used a direct measure of SO2 while Datt
and colleagues used the number of coal-fired power plants and
focused on the PM2.5 generated. Further studies are needed to
offer a clearer explanation of the biological mechanisms of the
impacts of SO2 exposure on child health. However, evidence
points to several mechanisms such as placental inflammation,
oxidative stress, epigenetic changes such as DNA methylation and
microRNA [52]. In addition, SO2 absorbed in the human body
likely has negative consequences for fetal growth and develop-
ment, leading to the destruction of function and microstructure of
germ cells [14]. Adverse birth outcomes and childhood illness
increase the probability of being malnourished [55].

In-utero exposure to indoor air pollution and its effect on
child nutrition
Past studies found that releasing pollutants from uncleaned
biomass burning in the household restricts fetal growth, increas-
ing the probability of having a child with low weight and preterm
birth [56]. Moreover, respiratory infection and childhood diseases
such as pneumonia and a weak immune system could result from
in-utero exposure to indoor air pollution [57]. Smoke from unclean
fuels is a complex mixture of pollutants that harm human health
[58]. The severity of impact, however, depends on the pollutants’
nature and the exposure duration. There are several pathways
through which indoor air pollution impacts children directly [59].
Studies also suggest that pregnant women exposed to indoor air
pollution are more likely to give birth to premature and low birth
weight babies [19]. In addition, exposure to indoor air pollution
during the first trimester of pregnancy has been shown to have a
negative impact on child growth indicators [60]. Understanding
the impact of exposure to pollutants during pregnancy is also
important because pregnant women tend to spend most of their
time indoors and this time only increases once the pregnancy
progresses. There is enough evidence to support the fact that this
causes detrimental birth outcomes, and its impact continues much
later than immediately after birth [16, 17, 19].

Strengths and limitations
The study is unique for several reasons: First, this is the first study
that takes into account multiple pollutants in explaining child health
conditions. As such, it builds upon the one study in India [23] that
published on in-utero exposure to PM2.5 and child malnutrition. In
addition, the study evaluates the effects of ambient and indoor
pollutants independently and altogether using nationally represen-
tative data. The study indicates a need for an intervention in both
rural and urban areas of India as pollution of different kinds are well
observed across the country with spatial hotspots. Conducting an

in-depth epidemiological study is necessary to understand the
biological mechanism of the relationship between air pollution and
undernutrition that cannot be explored through the existing data
set. The effects of PM by its composition have not been examined in
the study due to the unavailability of the data. The study has not
considered the different pollutants emitted from the household
cooking fuel due to the lack of information in the dataset. Similarly,
we were unable to account for individual-level smoking behaviours
though we do not expect these to correlate strongly with ambient
or indoor pollution after adjustment for maternal socioeconomic
status, urbanicity, and region. Finally, our research assumes that
mothers did not change their residence from pregnancy period to
the survey date. While this may introduce some error, our estimates
should be reasonable if they remain in the same general area and if
the children’s health was unrelated to if a mother moved.

CONCLUSION
The central premise of the study is that there is an association
between child nutrition outcomes and maternal exposure in-
utero to ambient air pollution. The findings of the study suggest
that, in addition to distinct spatial variations in the prevalence of
child undernutrition in India, there is a presence of hotspots and
cold spots of child undernutrition in the country. Maternal
exposure during pregnancy to ambient air pollution leads to a
higher risk of having undernourished and anaemic children. A
significant role of both indoor and ambient air pollution during
maternal gestation and the consequent child health can be
observed in the study, which indicates an urgent requirement of
continued efforts of cleaner air, fuel policy and awareness
generation. Besides addressing the immediate determinants of
nutrition, it is essential to target the distal factors like indoor and
ambient air pollution in a synchronised way in order to be able to
make progress in child health.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The study uses secondary data which are available on reasonable request through
https://dhsprogram.com/data/ and https://giovanni.gsfc.nasa.gov/giovanni/. The data
and code used in this study are available from the corresponding author on
reasonable request.
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